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1 Introduction

Supply-side shocks play an important role in explaining economic performance. Fossil
fuels and electricity are critical inputs in the production of manufactured goods, and
consequently, have a significant impact on shaping variable costs. Thus, sudden vari-
ations in energy prices can alter optimal firms’ decisions, as firms attempt to respond
to the shock. Variations in quantities, changes in the price of final goods, adjustments
via flexible markups, substitution between inputs or sectors to operate (which may
also affect productivity), are potential mechanisms that firms could put in place to
respond to energy cost shocks.

Understanding these responses is interesting from a policymaking perspective. To
illustrate, if electricity price shocks affect firms’ productivity, basically because elec-
tricity is directly involved in the production process, studying changes in productivity
can contribute to policy discussions related to the importance of investment in electric-
ity generation and distribution infrastructure.1 Moreover, whether firms respond or
not by passing cost shocks to final prices (pass-through), perhaps by exploiting flexible
markups, is relevant for discussions in public economics and industrial organization.
In this case, pass-through is central to the theory of tax incidence in public economics,
and price-markup plays a central role in understanding market power. 2

In this paper, I attempt to contribute to the empirical literature on energy cost
shocks and manufacturing firms by studying the following research question: How
do firms’ productivity and markups respond to energy price shocks? To address
this question, I use a panel of Chilean manufacturing firms over 1995-2007 and an
identification strategy that relies first on structural estimation methods, to recover
markups and productivity, and then on instrumental variables. I explore the 2004
Argentine energy crisis as a natural experiment for exogenous variation in electricity
prices, and also complement the research design with shift-share type instruments for
variable costs.

This paper proceeds in two steps. The first part presents the structural estimation
method to compute markups using firm-level data without having specific informa-
tion about marginal costs.

I begin by reviewing the widely used technique proposed by De Loecker (2011),
De Loecker and Warzynski (2012) and De Loecker et al. (2016), in which one can com-

1Some examples are Allcott et al. (2016) and Abeberese (2017).
2See, for instance, Ganapati et al. (2020) or De Loecker et al. (2016).
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pute a multiplicative price over marginal cost markup from the ratio of the output
elasticity of flexible inputs to the share of input expenditures in sales. Here I state
that, at least in the context of my paper, estimating the output elasticity by recover-
ing production functions using the proxy-variable approach in Olley and Pakes (1996),
Levinsohn and Petrin (2003) and Ackerberg et al. (2015), arises two important method-
ological concerns.

The first methodological concern is that, under imperfect competition, estimating
production functions using the proxy-variable technique requires to know markups in
advance, which would introduce a circularity problem (Doraszelski and Jaumandreu,
2019; Jaumandreu, 2018; Jaumandreu and Yin, 2018; Jaumandreu and Lin, 2018). A
second concern relates to a potential violation of the scalar unobservable assumption
in the first stage of the proxy-variable method. Firms operating under monopolistic
competition and facing unobserved idiosyncratic demand shocks will have optimal
intermediate input demand functions that depend on those demand shocks, which
basically means a violation of the scalar unobservable assumption in Olley and Pakes
(1996). To illustrate, in the Chilean data used in this paper there is only information on
industry-level price deflators rather than firm-level prices,3 which is a common char-
acteristic of the few public available firm-level datasets. This makes necessary to set
additional assumptions about the demand curve (see, for instance, De Loecker, 2011).
In this case, a demand curve subject to unobservable variables makes explicit that the
intermediate input demand function for materials will depend on unobserved produc-
tivity components and also on additional unobserved components from the demand
curve.4 Hence, it is less clear that a monotonic relationship between intermediate
inputs and productivity still holds.

These aforementioned issues motivate the use of an alternative estimation proce-
dure that does not rely on inverting a demand function, and perhaps that makes a
better fit with the available data. Gandhi, Navarro, and Rivers (2020) propose a dif-
ferent estimation technique to the first stage in the proxy-variable method. The idea is
to exploit the information stemming from a firm’s profit optimization problem, and
also some properties from the Fundamental Theorem of Calculus, to nonparametri-
cally estimate a firm’s production function. I thus describe in detail this method in the
first part of the paper, listing the necessary assumptions for the case of a revenue pro-

3This has additional implications for productivity measurements. The production function would
be a revenue production function, and therefore the measure of productivity is revenue-based (RTFP)
rather than physical volume (QTFP). See Foster et al. (2008) and Garcia-Marin and Voigtländer (2019)
for a discussion. Results in this paper are interpreted accordingly.

4De Loecker (2011) uses information on the demand to control for those shocks. The Chilean data
does not contain such similar information.
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duction functions, and state some potential limitations. To the best of my knowledge,
my paper would be the first empirical implementation of Gandhi et al. (2020) to study
revenue production functions, markups, and productivity.

The second part of the paper studies the empirical relationship between the out-
comes of interest, markups and productivity, and energy prices. The research design
takes advantage of some characteristics that made the Chilean economy an interesting
case study. First, Argentina cut off natural gas exports to Chile in 2004, creating an
unexpected situation that affected electricity generation in Chile. This crisis marked a
critical moment in the recent history of the electricity supply in Chile because about 35
percent of the electricity generation was based on natural gas, which was exclusively
imported from Argentina. I thus explore this natural experiment as a potential source
of exogenous variation in electricity prices to study how firms respond to energy
shocks. Moreover, because this identification strategy may lack enough cross-sectional
variation from the shock, I also complement the research design with additional instru-
ments that take advantage of another unique characteristic of the Chilean economy.
Chile is a small and open economy with a low production of fossil fuels, which makes
the economy highly dependent upon imported energy. This environment facilitates
the construction of additional instruments that can be computed from the interaction
between energy prices and the share of expenditures in fuels in each industry (shift-
share or Bartik type instruments). The intuition here is that higher energy prices affect
more the costs of those industries that rely more on energy to manufacture goods.

The paper presents two central findings. First, productivity does not seem to be
affected by short-run energy cost-shocks. This result is consistent with previous em-
pirical findings that, using alternative estimation techniques and datasets, also state
that potential adverse effects on productivity may come through alternative channels,
such as industry switching (e.g., Abeberese, 2017). Second, negative energy cost-shows
reduce markups for Chilean manufacturing sectors. The results from the instrumental
variables research design suggest that a 1 percent increase in energy costs leads to a
decrease of about 0.3 percent in markups.

In additional empirical findings, the paper shows that Chilean firms exhibit con-
stant returns to scales, with average input elasticities of 0.5 for flexible inputs and 0.2
for capital. Moreover, results from the structural estimation also suggest that Chilean
manufacturing firms have an average value of markups of 1.05, which is close to the
expected value in a competitive market (a value of one). Lower values of markups are
in the Food and Beverages industry, which is the largest sector in Chile.

The outline of the paper is as follows: The remainder of this introduction briefly
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reviews some related works in a large body of research on energy shocks, manufac-
turing firms, productivity, and production functions. In this part, I highlight some
of the contributions to the existing literature. Section 2 lays out the link between a
firm’s profit maximization problem and the two outcomes of interest: markups and
productivity. It then describes the empirical strategy. Thus, this section presents fur-
ther details about the Chile-Argentina natural gas crisis, the electricity sector in Chile,
the construction of the additional shift-share type instruments, and finally states the
econometric specification. Section 3 describes the panel data of Chilean manufacturing
firms. Finally, section 4 presents the results, and section 5 concludes.

Related literature This paper builds on several pieces of literature. One of the
strands of research is the empirical literature in Development Economics analyzing
the importance of electricity generation and transmission for manufacturing firms.
For instance, Allcott et al. (2016) study how electricity supply impact manufacturers
in India. The authors use an empirical strategy that combines structural estimation
for the production function, following the proxy-variable method, with instruments
from hydroelectric power availability. They find that shortages affect firms’ input
choices and revenues. In a similar fashion, Abeberese (2017) and Elliott et al. (2019)
present suggesting evidence for India and China, respectively, that electricity prices
affect firms’ decisions about which sectors to operate in. These results are relevant
for productivity because switching production to less electricity-intensive production
processes, as a response to an exogenous increase in electricity price, could drive
firms away from productivity-enhancing opportunities available in more electricity-
intensive sectors. Conversely, this literature does find a direct impact of electricity
prices on productivity. I contribute to this literature by providing external validity to
this result. I study variations in productivity due to energy prices in Chile, a different
country, and also a different research design.5

A second related body of literature is the empirical literature studying changes
in the final price of goods that result from cost shocks, which is best known as cost
pass-through (De Loecker et al., 2016; Ganapati et al., 2020; Goldberg and Hellerstein,
2008; Gopinath et al., 2010; Nakamura and Zerom, 2010). In this literature, whether
the price-markup is flexible or not plays a relevant role through which firms can ad-
just variations in costs. Ganapati et al. (2020) explore the potential consequences of
carbon taxes on fossil fuels by researching on how increases in energy cost are split

5Another related paper using a similar Chilean dataset is Álvarez et al. (2015). They use System-
GMM to study the effect of electricity prices on labor productivity (output per worker).
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between consumers and producers. They show that energy-price induced variations in
marginal cost are indeed passed to the final price of manufactured goods in the U.S.,
and therefore some standard assumptions, such as complete pass-through and perfect
competition in the incidence literature, may be too strong. Due to limitations in the
data I cannot make conclusions about the connection between energy price shocks to
the final price of goods. Despite the limitations, the context of the energy market in
Chile is an interesting case of study, and results presented here add to the empirical
evidence on variations in markups due to exogenous fluctuations in energy prices.

Likewise, competition is essential for a well-functioning economy. Recently De
Loecker and Eeckhout (2019) have estimated an economy-wide markup of about 1.6,
calling the attention to a rise in global markups. I also contribute to the study of firms’
competition by looking at how markups react to changes in the economic environment.
Although a firm may exhibit a markup greater than one, it can still be operating in a
competitive framework. Whether we observe a sharp decrease in markups after a cost-
shock may help to understand more about the industrial organization environment in
which the firm operates.

Lastly, methodologically speaking, this project relates to the empirical literature
on estimating production functions. Productivity, a key component in the produc-
tion function, is not directly observed, and its approximation from a residual in, for
instance, a log-linear Cobb-Douglas production function involves a simultaneity bias
(Marschak and Andrews, 1944). My paper illustrates how to use a method that over-
comes this endogeneity problem. Furthermore, as mentioned in the introduction, esti-
mating production functions can eventually become a critical step in the estimation of
markups (De Loecker et al., 2016; De Loecker and Warzynski, 2012; De Loecker, 2007).
I contribute to the literature by reviewing some potential challenges that this approach
may arise, and also by illustrating an alternative to the proxy-variable technique (Olley
and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015).

2 Model and Empirical Strategy

This section is divided into two parts. The first part introduces a structural estimation
technique to compute markups and productivity using production data and without
having specific information about marginal costs. I first point out that the widely used
approach in De Loecker and Warzynski (2012), in combination with the proxy-variable
method (i.e., Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al.,
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2015), involves two relevant difficulties in the context of this paper: circularity and
a violation of the monotonicity assumption in Olley and Pakes (1996). After briefly
going over the ideas in De Loecker’s works (i.e., De Loecker, 2011; De Loecker and
Warzynski, 2012; De Loecker et al., 2016), and the proxy-variable technique, I motivate
the use of an alternative method proposed by Gandhi et al. (2020). To the best of my
knowledge, my paper would be the first empirical implementation of this technique
to study market power.

The second part describes the empirical strategy to study the relationship between
the outcomes of interest, productivity and markups, and energy prices. In this part, I
use instrumental variables in order to deal with potential endogeneity problems stem-
ming from, for instance, measurement error and also to deliver a policy-relevant local
average treatment effect. I first explore a natural experiment, the 2004 Argentine crisis,
as a potential source of exogenous variations for electricity prices. I then complement
the research design by studying how energy-price induced variations in average vari-
able costs affect productivity and markups.

2.1 Markups and Revenue Productivity (TFPR)

2.1.1 Issues when using the proxy-variable technique.

A technique to compute markups, using only information from the supply side (i.e.,
firms-level data) and without having specific information about costs or how firms
compete in the product market, is proposed in De Loecker and Warzynski (2012) and
extended in De Loecker et al. (2016). Cost minimization with respect to a flexible input
(i.e., materials) allows one to obtain a multiplicative price over marginal cost markup
(µ) from the ratio of the output elasticity of the flexible input ( f m)6 to the intermediate
input share of output (Sm = Expenditure on Materials/Revenues). In other words, the
markup for a firm i in period t is7

µit ≡ f m
it (S

m
it )
−1 (1)

The share Sm can directly be observed in the data and the only unknown variable in

6Let F(K, L, M) be a production function, then the elasticity with respect to a flexible input (i.e., M),
is given by f m = ∂ ln F(·)/∂ ln M.

7There are some additional corrections to consider. For instance, one related to the residual term in
the production function, ε, which would imply µ = f m (Sm)−1 exp(−ε). Appendix A describes how to
obtain markups from the problem of a cost minimizing firm.
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this equation would be the elasticity, f m. Therefore, authors rely on the proxy-variable
technique in Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al.
(2015) for estimating production functions, and therefore, to recover the elasticity f m.

The proxy-variable technique is a two-step approach to estimate production func-
tions. The first step is an attempt to replace the unobserved (to the econometrician)
productivity component by a nonparametric function that depends upon a firm’s cap-
ital, materials, and labor. In other words, productivity is ‘proxied’ by a nonparametric
function on inputs. Generally speaking, the idea is that the optimal demand for the
flexible input (materials) depends on capital, labor and, monotonically on only one
unobserved variable, productivity. Thus, this monotonicity assumption allows one
to invert the input demand, solving for productivity. The second step shares ideas
with the literature in panel data (Anderson and Hsiao, 1982; Arellano and Bond, 1991;
Arellano and Bover, 1995), and it is about the time in which firms optimally select
inputs. This timing assumption does not vary much in recent literature on estimating
production functions, and will be formally presented later.

Although this proxy-variable method deals with some of the most relevant issues
when estimating production functions, such as the simultaneity bias in Marschak and
Andrews (1944)8 and the selection bias of Olley and Pakes (1996),9 it arises two im-
portant concerns in the context of this paper.

First, if a firm has some market power, then the optimal demand for flexible in-
puts would be affected by the firm’s markup, inducing a problem of circularity. In
other words, markups affect the estimation of production functions and vice versa.
This circularity problem has previously been pointed out by Doraszelski and Jauman-
dreu (2019), Jaumandreu (2018), Jaumandreu and Lin (2018), and Jaumandreu and Yin
(2018). To illustrate, let’s assume that the production function can be represented by
a linear relationship between one output (y), a vector of inputs (x), one unobserved
component named productivity (ω), and a measurement error component (ε)

yit = x′itβ + ωit + εit (2)

According to the proxy-variable method, the demand for flexible inputs would be

8An OLS regression of outputs on inputs will lead to endogeneity problems because the residual,
which includes the unobserved productivity component, will correlate with the optimal choice of in-
puts.

9It is the classical selection bias in econometrics, which may arise from the fact that firms with higher
productivity have higher probability of survive over time, and therefore, are the observations that an
econometrician can observe in the dataset.
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a function h that depends on productivity and other predetermined inputs, namely,
x f lex = h(xnon f lex, ω). Assuming that ω is the only unobserved component in this
equation, and that there is a monotonic relationship between x f lex and ω, this equation
can be inverted to solve for productivity, ω = h−1(xnon f lex, x f lex). Thus, this is used
to replace productivity in the production function (equation 2). On the other hand, if
the optimal demand for the intermediate inputs is also a function of market power,
the inverse function should be like h−1(xnon f lex, x f lex, µ). This basically means that it
is necessary to know markups if we want to estimate production functions.

The second concern is somehow related but stems from the data and model spec-
ification. Specifically, the data used in this paper does not contain firm-level output
prices. This is a common characteristic in those few panel datasets at the firm-level
that are publicly available. Therefore, it is necessary to rely on additional assumptions
on the demand side - for instance, as in Klette and Griliches (1996) and De Loecker
(2011), I will assume a CES demand function. Then the optimal demand function
for flexible inputs will also depend on unobserved (to the econometrician) demand
shocks, which implies a violation of the monotonicity assumption in the proxy-variable
method. As Olley and Pakes (1996) state, the inversion of the input demand function10

“rests on there being only one unobserved firm specific state variable.”(p. 1274). In
other words, one crucial assumption for identification in the proxy-variable method is
that there is a one-to-one relationship between a firm’s decision for investment (or de-
mand for materials in a more recent literature) and productivity, which allows to invert
the investment (demand for materials) function. However, it is not longer clear that
this one-to-one relationship holds once the investment function (or demand function)
depends on additional unobservable variables.11

In brief, because the two issues are basically associated to the first stage in the
proxy-variable method, the solution I propose is to compute markups and estimate
the production function by avoiding the necessity of nonparametrically inverting an
intermediate input demand function. Gandhi, Navarro, and Rivers (2020) is an alter-
native approach, which exploits information from a firm’s optimization problem and
some algebraic properties from the Fundamental Theorem of Calculus to nonparamet-
rically identify production functions. In addition to overcome the aforementioned two
concerns, this method does not rely on having access to exogenous price variations

10Olley and Pakes use investment rather than materials. See also Levinsohn and Petrin (2003) for
more details.

11To illustrate, as I will show later using a CES demand curve, productivity becomes a linear com-
bination of ω and let’s say demand shocks, ξ, such as ω̃ = κ(ω, ξ). Therefore, the optimal demand
function will depend on two unobservable variables: x f lex = h(xnon f lex, ω̃) ≡ h(xnon f lex, κ(ω, ξ)).
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or other exclusion restrictions. Furthermore, the method deals with an identification
problem in the proxy-variable technique, which is related to a lack of additional source
of variations to identify the production function.12

2.1.2 The Gandhi, Navarro, and Rivers (2020) Estimator.

I briefly being with a list some of the most relevant assumptions and then show a
model for a firm that is setting inputs in order to maximize instant profits. The main
goal of the model is to show how to set the identification moment conditions to recover
productivity and markups without specific information about costs or product prices.

Definitions and Assumptions. Denote by (Yit, Kit, Lit, Mit) a generic firm’s
output, capital, labor and intermediate inputs, respectively, and by lowercase letters
(yit, kit, lit, mit) their log-values. Moreover, let Iit be the information set that contains
all the information that firm i in segment j can use to solve its period t decision prob-
lem.

Assumption 1. Hicks-Neutral Production Function. The production function
takes the form,

Yijt = F(Kijt, Lijt, Mijt)eaijt ⇔ yijt = f (kijt, lijt, mijt) + aijt (3)

moreover, F(·) is continuous and strictly concave in materials, and ait = ωit + εit.

This is a standard assumption in the literature on estimating production functions,
and basically says that ωit is a separable component representing productivity. The
idea is that productivity is known to the firm, but not observed by the econometrician.
On the other hand, εit is either measurement error or a shock that is unpredictable with
time-t information, hence has zero conditional mean (given right-hand-side variables).
The following assumption clearly states which information is available to the firm in
period t.

Assumption 2. Timing - Information Assumption. {kit, lit, ωit} ∈ Iit, while mit is
freely adjustable.
Assumption 2.A. Moreover, ωit is a (controlled) Markovian, and εit is independent of
the within period variation in information sets.

Assumption 2 states that ωit is observed by the firm in period t, and also considers

12See Gandhi et al. (2020) for more details about this last issue.
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possible dynamics in capital.13 Moreover, in this assumption labor markets may not
be so flexible or freely adjustable.14 Hence, in this assumption mit would be the only
flexible factor that, in the short-term, if the price of energy varies, firms can easily
adjust their consumption for intermediate inputs rather than capital or labor.

Assumption 2.A. is the same used in Olley and Pakes (1996) and provides more
details about the information regarding the productivity process. Specifically, the
distribution of ω is such that Pω(ωit|Iit) = Pω(ωit|ωit−1), while for the residual ε

is Pε(εit|Iit) = Pε(εit). Moreover, without loss of generality, E(εit|Iit) = 0. Part of
the intuition in these assumptions is that productivity shocks in period t + 1 are not
correlated with any information available to the firm in period t, and therefore, it is
possible to set moment conditions to identify the production function.

Finally, there are two additional assumptions related to prices. While Assumption
3 is about input prices, Assumption 4 helps to deal with missing output prices by
introducing a demand system into the production framework.

Assumption 3. Firms are price taker in the intermediate input market. Firms
take the price of materials (PM

ijt ) as given.

Assumption 4. Monopolistic competition with a constant elasticity of sub-
stitution (CES) demand system. Assume a standard horizontal product differentia-
tion demand system that allows for different substitutions patterns by segment j:

Pijt = P̄jt

(
Yijt

Ȳjt

)1/σjt

exp(ξijt) (4)

where Pijt is the output price, P̄jt is the segment or industry price index, Ȳjt is an
aggregate demand shifter, ξijt is a demand shocks. This last assumption is similar to
the assumption in Klette and Griliches (1996) and De Loecker (2011), and allows to set
information about output prices, which are not observed in the data. Moreover, from
this assumption, segment-level time-variant markups are defined by (1 + 1/σjt)

−1.

The Firm’s Problem. Under Assumptions 1, 2, 3, and 4, the firm’s profit maxi-
mization problem with respect to materials is

max
Mijt

PijtEt

{
F(Kijt, Lijt, Mijt)eωijt+εijt − PM

ijt Mijt

}
(5)

13For instance, Kt = It−1 − (1− d)Kt−1, where, I is investment and d is depreciation.
14This could be a more realistic assumption for developing economies.
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because M does not have dynamic implications, the first-order condition of the
problem is

(1 + 1/σjt)P̄jt

(
Yijt

Ȳjt

)1/σjt

eξijt

(
∂Fijt(·)
∂Mijt

)
eωijt e−(1/σjt)εijtEt

{
e(1+1/σjt)εijt

}
= PM

t (6)

writing this expression in terms of the (naural log of) intermediate input share of
output ln(SM),

ln(SM
ijt) = φjt + ln

(
Ẽ ∗ f m,µ

ijt

)
− ε̃ijt (7)

with φjt = ln(1/(1 + 1/σjt)) + µ; Ẽ = Et

{
e(1+1/σjt)εijt

}
; ε̃ijt = (1 + 1/σjt)εijt; and

f m,µ is the input elasticity, ∂Ln(F(·))/∂Ln(M), up to (exponential of the negative value
of) a constant µ.

As Gandhi et al. (2020) show, equation (7) is nonparametrically identified. There
is only one unobserved component, ε, which by assumption has mean E{εijt|Iijt} =
0. Thus, it is possible to estimate equation (7) using, for instance, a nonparametric
approach for the elasticity f m,µ, dummy variables for φjt, and Nonlinear Least Squares.
This first stage would produce estimates for the elasticity of materials up to a constant

( f̂ m,µ ≡ f me−µ
∧

), the residuals (̂̃εijt), and hence, the constant ̂̃E .

The next step uses the estimates from the previous regression, in a combination
with arguments from the Fundamental Theorem of Calculus and the Markovian-
timing assumption, to recover the production function.

First, f m,µ
ijt defines a partial differential equation, thus from the Fundamental Theo-

rem of Calculus∫
f m,µ
ijt dm = e−µ

∫
f m
ijt dm = e−µ

[
f (kijt, lijt, mijt) + C (kijt, lijt)

]
(8)

where f (·) is the production function defined in Assumption 1, and C (·) is the
constant of integration.

Second, using Assumption 4, the production function in Assumption 1 can also be
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expressed in terms of (natural log of) real revenues

rijt =

(
1 +

1
σjt

)
f (kijt, lijt, mijt)−

(
1

σjt

)
ȳjt +

[(
1 +

1
σjt

)
ωijt + ξijt

]
+ ε̃ijt (9)

thus, replacing f (·) from equation (8), writting eφ−µ = (1 + 1/σ), and using the
estimates from the first stage (NLS), equation (9) becomes[

rijt − eφ̂jt

∫
f̂ m,µ dm− ̂̃εijt

]
= −eφ̂jt−µC (kijt, lijt) +

(
eφ̂jt−µ − 1

)
ȳjt + ω̃ijt (10)

with ω̃ijt =
[
(1 + 1/σjt)ωijt + ξijt

]
.

This is the central equation in the second stage, in which there is only one un-
observed variable: ω̃. Therefore, by extending the assumption that productivity is
Markovian to ω̃, we can express equation (10) in terms of only one random compo-
nent and set moment conditions to identify the remaining parameters in the produc-
tion function. Specifically, let ω̃ be Markovian, such as

ω̃ijt = E
{

ω̃ijt|ω̃ijt−1
}
+ ηijt ≡ g

(
ω̃ijt−1

)
+ ηijt (11)

thus, given the Timing-Information Assumption, it is possible to use the following
moment restriction

E
{

ηijt|kijt, lijt
}
= 0

to identify the constant of integration C (kijt, lijt) as well as µ, and hence the level
of the markups.

Remarks. There are two important features in this technique that are worth high-
lighting. First, it is only possible to recover a linear combination of productivity and
demand shocks, ω̃ rather than ω. As Gandhi et al. (2020) state, without observing
output prices it is not possible to disentangle whether, after controlling for inputs, a
firm has higher revenues because it is more productive or because it can sell at a bet-
ter price. In this regard, Foster et al. (2016) and Garcia-Marin and Voigtländer (2019)
discuss in more detail potential differences that may arise in productivity-analyses
based on revenue-based productivity measures (TFPR) and physical efficiency mea-
sures (TFPQ). Considering the limitations in the data, in which I do not observe firm-
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level output prices, results in my paper related to productivity will be interpreted with
a note of caution. Second, notice that markups are recovered from a combination of
estimates for φjt in the first stage, and the estimate for the constant µ in the second
stage (i.e., using variations in Ȳij). Thus, time-variant markup measures are at the
segment-level rather than firm-level (e.g., as in De Loecker et al., 2016). Although not
the same level of disaggregation, estimating markups at 4-digit categories (‘classes’)
is still informative about average firms’ responses to market shocks and thus differ-
ences between markets over time. Again, although this limitation is mainly related
to unavailable output prices and information from demand side, Gandhi et al. (2020)
represents a relevant improvement in this direction. As an comparison exercise, Ap-
pendix B presents additional results implementing the proxy-variable technique as in
De Loecker and Warzynski (2012).

Notes on the empirical implementation. First, the unknown functions f m(·),
C (·), and g(·) are nonparametric specifications based on log-sieve polynomial approx-
imations. To illustrate,

C (kijt, lijt; α) = ∑
0<τk+τl≤3

ατk,τl kτk
ijtl

τl
ijt

Second, standard errors are computed using wild bootstrap (Horowitz, 2001; David-
son and Flachaire, 2008). Given the panel structure, the resampling process is in i.
Moreover, the auxiliary distribution is the Rademacher distribution rather than com-
monly used two-point Mammen (1993). The former presents better behavior in the
second and the fourth moments (Djogbenou et al., 2019).

Finally, in the Appendix B, the De Loecker and Warzynski (2012) estimator, the
production function is a translog. Thus, x = (1, k, m, l, .5k2, .5m2, .5l2, km, kl, ml)′ is the
vector of inputs for equation (2).

2.2 Energy Prices, Markups and Productivity

I now turn to present the two research design for energy prices and the description
of the empirical analysis of how energy prices affect markups and productivity. I
focus on natural gas induced variations in electricity prices and also on energy-price
induced variations in average variable costs. The goal is twofold: to deliver a local
average treatment effect of energy cost on markups and productivity, and also to
address potential endogeneity problems. To illustrate, the establishment-level energy
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prices are computed from the ratio of two survey question responses, the total cost
of a particular fuel and the total quantity of fuel purchased. Thus, the potential of
measurement error can be a concern because the explanatory variables correlate with
the error term.

The following two measures of variation in energy prices take advantage of the fact
that national changes in the use of natural gas or in the price of a fuel disproportion-
ately affect regions and industries heavily dependent on that fuel. For instance, when
the national price of oil rises more than the national price of coal or electricity, indus-
tries heavily dependent on oil will be disproportionately affected. These “shift-share”
instruments are related to Bartik (1991) and are commonly used in labor and public
economics to study.

2.2.1 The Natural Gas Crisis.

Argentina is one of the main producers of natural gas in Latin America, and also
shares a land border with Chile. In the late 90’s, Chile invested in infrastructure to
facilitate the imports of natural gas from Argentina. This led to important changes in
the power generation sector in Chile, which represented about 50 percent of the bulk
of the gas demand in Chile. To illustrate, figure 1 shows that electricity generation
capacity based on natural gas increased from less than 8% in 1997 to nearly 30%
in 2001. By 2003 the installed electricity generation capacity mainly relied on four
sources: hydro-power generation (35%), natural gas (30%), Oil (16%), and Coal (17%).
Thus, the imports of natural gas at lower prices, combined with low international oil
prices, contributed to a sharp decrease in electricity prices in Chile by 2001 (figure 3).

In 2004, Argentina experienced an energy crisis. It was a shortage of energy15 that
forced the country to unexpectedly cut off exports of natural gas to Chile. This sharp
cut-off happened across several months, but how much gas was supplied varied from
day-to-day.16 Operators of many gas-fired power plants in Chile adapted to this sharp
reduction in supply by switching to diesel, nearly four times more expensive than
natural gas.17

The crisis marked a critical moment in the recent history of the electricity supply

15Although there are several explanations for the shortage, two relevant are: (i) the low temperatures
during the winter, which increased the requirements for heating in Argentina; and (ii) a decrease in the
capacity of production of natural gas after the 1998-2002 great depression.

16See, for instance, Honoré (2004).
17There were also power outages, though I center the attention on variations in energy prices.
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Figure 1: Fuel shares of total electricity generation in Chile.
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Notes: The figure shows the mix of fuels used for electricity generation in Chile,
1996-2007. Source: Author’s calculations using information from the Comision
Nacional de Energia, Chile - CNE.
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in Chile, which can work as a natural experiment to study how firms respond to
energy shocks. Thus, the first identification strategy in this paper attempts to exploit
variations in the use the of natural gas over time and space. In addition, it also takes
advantage that in the dataset the Chilean plants report consumption and expenditures
of different types of fuels and almost none of them18 used natural gas as input.

Utilities in Chile supply electricity to one of the following grid-systems:19 the Great
Northern Interconnected Grid (Sistema Interconectado Central del Norte Grande, SING),
the Central Interconnected Grid (Sistema Interconectado Central, SIC), Aysen, and
Magallanes. Figure 2 illustrates the distribution of these grids, which are divided ge-
ographically and cover approximately 22%, 75%, 2%, and 1% of the installed capacity,
respectively. I thus construct instruments for electricity prices using the product of
the local utility’s capacity share of natural gas in each grid-system, for a fixed year
previous to the crisis, and the (natural log of) consumption of natural gas per year. In
addition, considering that electricity prices are yearly adjusted based on the monomic
price in the previous year, in the regressions I use the lagged value of the instrument.

In brief, the first empirical strategy uses exogenous variation in the supply of nat-
ural gas, which affected the composition of fuels used by Chilean power utilities in
each grid system, and, in this way, the electricity price paid by manufacturing firms.20

2.2.2 Instrumental Variables for Average Variable Cost

The Argentine crisis was a relevant energy shock in Chile. However, a potential con-
cern with the instruments obtained in this strategy may be a lack of enough cross-
sectional variation from the shock. In other words, only one grid system covers more
than 50% of the manufacturing firms, and the instruments may be mainly relying on
time series variations. I, therefore, complement the research design with additional
instruments that take advantage of the differences in the intensity a which industries

18Less than 6%.
19The description mainly applies for period of time study in this paper. The configuration of grids is

not exactly the same in the present.
20Assuming that this was the only channel through which Argentina affected manufacturing firms

in Chile may represent a strong assumption. There are other channels through which the 2004 Ar-
gentine crisis may affect Chilean manufacturing firms. Namely, a decrease in international trade that
may decrease the revenues of Chilean firms, or variations in electricity and natural gas prices may
negatively affect Chilean households’ budgets, which translates to a lower demand of other locally pro-
duced goods. Although the dataset does not contain information on exports, in Appendix C I provide
additional information about exports using data from Comtrade, UN. Exports by sector seem to remain
constant around the period of the crisis.
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Figure 2: Geographical Distribution of the Grid Systems in Chile.

Notes: The figure illustrates a political map of Chile and includes the geographical
areas covered by each grid system in 2007. Numbers in parenthesis are share of
net capacity. Names on colored areas are Chilean regions with their capitals and
national capital. Source: Author’s design and calculations using a map from Maps
of World (2015; retrieved May, 2017 from https://www.mapsofworld.com/chile/chile-
political-map.html) and information from the Comision Nacional de Energia, Chile
- CNE.
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use different fuels.

The second approach follows ideas from the instrumental variables identification
strategy in Ganapati et al. (2020), Abeberese (2017) and Allcott et al. (2016). I generate
proxies for changes in plant-level energy costs that can be used to instrument a mea-
sure of plant-level average variable cost. This source of variation stems from the fact
that different manufacturing industries use different energy inputs. In other words,
industries whose production process mainly use, for instance, oil will see energy costs
increase more when oil prices rise.

Table 1: Allocation of Energy Input Expeditures by Industry in percentage (%)

Fuel Oil Electricity Coal

Food 1.27 1.07 0.22

Textil 2.41 0.35 0.06

Wood 3.36 0.63 0.00

Paper 5.74 2.12 0.00

Metals 5.56 1.45 3.56

Furniture 1.42 0.37 0.01

Notes: This table presents the variation in the percent of total input costs
that come from different fuels for some selected industries. Statistics are
calculated by dividing the expenditure on each energy input by the total
annual expenditures (salary and wages; materials; electricity; oil; coals;
other fuels) in an industry. Source: National Annual Manufacturing
Industry Survey - ENIA.

As an illustration, table 1 shows the allocation of energy expenditure across fuels
as a percentage of total input expenditures for some selected industries. Total input
expenditures are defined as expenditures on salary and wages, materials, electricity,
and fuels. Thus, column 1 in table 1 shows that 5.56 percent of the total input cost
for metal industry come from fuel oil, but column 2 indicates that 1.07 percent of total
input costs in food and beverages come from electricity. In addition, figure 3 shows
time-series patterns in the real price of the three primary fuel in the analysis - coal, oil,
and electricity. The time series show similar trend, however, each fuel has independent
variation.
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Figure 3: Fuel Prices, 1995-2007.
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Notes: This figure plots time series of national prices from 1995 to 2007. Real values
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National Comission of Energy, Chile - CNE. These two time series were also adjusted
using the real exchage rate and are divided by 100 to facilitate a common axis across the
three fuels.

To formalize the relationship between industry fuel prices and industry hetero-
geneity in fuel inputs used, let zjt be a vector of instruments for a given year t and
industry j. Hence, z is obtained from the product of the industry’s expenditure shares
of electricity, oil and coal and the respective annual average leave-out mean fuel price21

zj,t =
[

p̄(−j,t, f ) · Share(j,t0, f )

]
; f ∈ {electricity, oil, coal} (12)

where p̄(−j,t, f ) denotes the national, leave-out mean (natural log of) input price
of fuel f for industrial consumers. Share(j,t0, f ) is the share of total expenditures in
industry j and year t0 devoted to fuel f .

21As a robustness check exercise, I also explore national average prices. For instance, using the
monomic node price of electricity.

19



2.2.3 Energy Prices, Average Variable Costs, Productivity,
and Markups.

I use the constructed energy price variation to estimate the effect of electricity prices
and average variable cost on markups and productivity. The main specification is an
instrumental variable linear regression model with high-dimensional fixed effects

yijt = β1 rijt + x′itβ + αi + γt + εijt (13)

where i and t index plant and year, respectively. The index j refers to an indus-
try if r is the average variable cost, and to a grid-system if r is the (natural log of)
of electricity price. yijt is the outcome of interest, markups or productivity. In the
case of electricity prices, for instance, the vector x includes the leave-out mean fuel
prices p̄(−j,t, f ), separately for each fuel and the industry energy input share Share(j,t0, f )
measured in a fixed year t0 (e.g., 2003). Equation (13) also includes plant fixed effects
αi, year fixed effects γt, and an idiosyncratic error εijt. In some specifications, x also
includes additional controls, such as a linear time trend for each industry (or region),
and industry by time fixed effects. Finally, β1 is the coefficient of interest and mea-
sures the elasticity of the independent variable, markups or productivity, with respect
to r (electricity prices or average variable costs).

3 Data

This paper uses as a primary dataset the National Annual Manufacturing Industry
Survey (Encuesta Nacional Industrial Anual, in Spanish), henceforth ENIA, collected
by the Chilean statistical agency, the Instituto Nacional de Estadísticas (INE). Previous
studies, such as Levinsohn and Petrin (2003) in the production function estimation
literature, Bergoeing and Repetto (2006) in the productivity literature, and Pavcnik
(2002) and Alvarez and Lopez (2005) in the international trade literature, have also
used the ENIA, though they use different variables and dataframes. I additionally
supplement the dataset with information from the National Commission of Electricity
of Chile (CNE), on energy prices, consumption of fuels by utilities, and generation.
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National Annual Manufacturing Industry Survey (ENIA) I use admin-
istrative information on annual plant, or establishments, from the INE.22 The ENIA
is representative of the universe of Chilean manufacturing plants with ten or more
workers, which have developed activities for six months or more. The survey contains
detailed information about plant characteristics, such as the number of workers, the
average of working days, remunerations, taxes, intermediate outputs, electric power
consumption (in thousands of KW per hour) and bill, fuel consumption and total bill,
aggregate value, among other information. I use the data to construct an unbalanced
panel for the period 1995-2007, and compute plant-level measures of relevant vari-
ables, such as labor, capital and materials.23 The ENIA does not report plant-level
prices, but it does contain information on prices at the 4-digit ISIC level. I also con-
struct additional deflators from INE’s wholesale price indices and use other standard
price deflators, such as the CPI from the Central Bank of Chile. As in Bergoeing
and Repetto (2006), I exclude the tobacco industry and petroleum refineries from the
analysis, because they are organized as monopolies.

the establishment-level energy prices are computed from the ratio of two survey
question responses, the total cost of a particular fuel and the total quantity of fuel
purchased

Table 2: Number of Plants per Year in the ENIA

Year Number of Plants Number of Plants

Original Final Dataset

2001 5,088 4,492

2003 5,377 4,662

2005 5,516 4,437

2007 5,037 3,827

Notes: This tabla illustrates the number of observations in the dataset
per year. Selected years (Other years show similar figures and are ex-
cluded). Column 2 shows the number of observations after constructing
the panel. Source: Author’s calculations using the ENIA.

22The structural model describes firms, rather than establishments or plants. The paper presents
these words as synonyms. Some researchers have reported than only less than 10% of the Chilean
manufacturing firms are multi-plants (see, for instance, Micco and Repetto, 2012).

23There are several survey questions that can be linked to a single variable in the model, for instance,
labor. Thus, to guide the construction of the final variables to use in the analysis, I first replicated
statistical reports prepared by the INE. For instance, one report is the Annual Report 2007 prepared by
INE La Araucania (Análisis: Encuesta Nacional de la Industria Anual; ENIA Regional La Araucania).
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Table 2 presents the number of observations in the original sample and after con-
structing the variables of interest.24 There is information for nearly 5,000 manufactur-
ing plants per year. Table 3 presents some descriptive statistics for the main variables.
In this table I compute the mean and the standard deviation aggregating plants at the
2-digit ISIC level. Gross output, capital stock and materials are expressed in (natural
log of) 2003 Chilean pesos. In addition, as in Bergoeing and Repetto (2006), labor in-
puts are measured as the annual average of employees working at the firm, corrected
by the number of days the firm operated in any given year.

Table 3: Descriptive Statistics: Mean and (Standard Deviation)

Industry y k l m

Food 13.51 11.79 3.50 12.62

(1.82) (2.41) (1.19) (1.92)

Apparel 12.74 10.97 3.41 11.61

(1.43) (1.83) (1.01) (1.65)

Wood 13.51 12.14 3.68 12.63

(1.73) (2.16) (1.16) (1.87)

Paper 14.36 13.05 3.88 13.45

(1.97) (2.41) (1.20) (2.03)

Chemicals 14.76 13.25 3.78 13.59

(1.83) (2.21) (1.25) (1.99)

Metals 15.42 14.18 4.22 14.47

(2.64) (2.82) (1.46) (2.80)

Machinery 13.24 11.79 3.39 12.25

(1.45) (1.81) (0.97) (1.44)

Overall 13.48 11.99 3.50 12.51

(1.77) (2.23) (1.14) (1.91)

Notes: This tabla presents descriptive statistics, mean and standard devi-
ation (in parenthesis), of the main variables constructed using the ENIA.
y is the gross output expressed in (natural log of) 2003 Chilean pesos.
Similarly, k, l and m are the (natural log of) inputs capital, labor and
materials.

24I only present some selected year. Results are similar for other years.
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The National Commission of Electricity of Chile (CNE) I also use infor-
mation from the National Commission of Electricity of Chile. Specifically, I use annual
reports and statistical data from the CNE’s website25 to compute additional variables,
such as net installed capacity by grid-system and year, electricity prices (Monomic -
energy and power, node price in local currency - CLP, per kWh), consumption of natu-
ral gas by grid-system and imports of natural gas. Nominal values, such as electricity
prices, were deflated using the CPI.

4 Results

This section first presents the estimation results for the production function, in terms
of elasticity and productivity, and markups by industry. It then presents results
for the empirical relationship between energy prices, average costs, productivity and
markups.

4.1 Markups and Productivity

Production functions and productivity As it is common in the literature
on estimating production functions, results are summarized in terms of the output
elasticities and the sum of these elasticities, which is a measure of the local returns
to scale (RTS). Columns 2 to 4 in Table 4 show the estimates of the average output
elasticities for each industry, and column 5 reports the RTS. Consistent with previous
findings in the literature, and in line with the assumptions made in section 2, the
output elasticity of the input materials is larger than the output elasticity of capital.
The reported elasticities exhibit wide variation across sectors. Also, the table shows
that the values of RTS are close to one, which may be interpreted as statistical evidence
of constant returns to scale.

Figure 4 presents box-plots of estimates of revenue total factor productivity (TFPR)
for each industry. The figure summarizes the entire set of firms’ productivity data
points, disclosing differences within and between industries. For instance, results
show more dispersion in Textiles, Metals, Machinery, and Motors. The differences
in productivity, especially between narrowly related sectors, may also be related to
the presence of distortions and allocative inefficiency. This result is something al-
ready reported and studied in more detail in the literature on misallocation (Hsieh

25Retrieved in May, 2017 from https://www.cne.cl/en/estadisticas/electricidad/.
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and Klenow, 2009).

Table 4: Output Elasticities and RTS

(Observations) f m f l f k RTS

Food ( 31% ) 0.48 0.54 0.16 1.18
Apparel ( 6% ) 0.29 0.84 0.2 1.33
Wood ( 7% ) 0.55 0.74 0.25 1.54
Paper ( 3% ) 0.38 0.34 0.2 0.92
Publishing ( 5% ) 0.33 0.37 0.24 0.95
Chemicals ( 6% ) 0.68 0.8 0.36 1.84
Rubber ( 6% ) 0.43 0.54 0.18 1.15
Metals ( 2% ) 0.4 0.54 0.2 1.15
Machinery ( 5% ) 0.46 0.66 0.27 1.39
Elect.Mach. ( 2% ) 0.69 0.88 0.27 1.84
Overall (100%) 0.47 0.5 0.19 1.16

Notes: This table presents the output elasticities for each input: materials,
labor and capital. f j denotes the output elasticity of input j, ∂Ln(F)/∂Ln(j)
with j ∈ {k, l, m}.
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Figure 4: Estimates of (Revenue) Productivity. Box-Plot of ω̃ by Industry.
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Notes: This figure shows Box-Plot graphs for the estimates of productivity by
sector.

Markups Table 5 reports average values for the estimates of markups for each
industry. Overall, the median value of the estimated markups is about 1.36, and the
mean is 1.05, which is close to what it is expected in a perfectly competitive market (a
markup of one). The results are also comparable to previous findings in the literature
for other developing economies. For instance, De Loecker (2007) using Slovenian
manufacturing data reports a median value of 1.22.

Figure 5 presents a box-plot of the estimates of markups for each industry. The ver-
tical red line represents a perfectly competitive market. Most industries have markups
greater than one and there are significant differences between industries. For instance,
Chemicals and Electric Machinery are the two industries with the highest values of
markups. Conversely, Food and Beverages, the largest industrial sector in Chile,
presents less dispersion. The markups for this industry are in a range between 1
and 1.4.
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Table 5: Markups by industry.

Median Mean

Panel A. Overall.
Total 1.05 1.36

Panel C. By Industry.
Food 0.96 1.22
Textiles 1.28 2.25
Wearing 1.11 1.11
Wood 1.04 1.46
Paper 0.96 0.96
Chemicals 1.27 2.01
Rubber and plastics 1.03 1.19
Fabricated metal prod. 1.21 1.23
Motor vehicles 0.78 1.03
Furniture 0.92 1.19

Notes: This table reports summary statistics for markups by industry. Selected
sectors. Markups are computed at the sector level (ISIC 4-digit) and statistics
in this table are at the industry level, ISIC 2-digits.
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Figure 5: Estimates of Markups. Box-Plot of µ by Industry.
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Notes: This figure shows box plot graphs for the estimates of markups by
industry. Selected sectors.

Energy intensity and markups (Placebo Test) According to the framework
in this paper, firms operating in regions or industries that use more energy are those
who are more exposed to energy shocks. I now explore for a potential relationship
between the industries’ expenditures shares and the outcomes of interest that may
affect the identification strategy. Figure 6 examines for patterns between the markups
and each industries’ electricity intensity. Panel (a) presents two scatter plots for two
different years, 2003 and 2007. The size of a circle illustrates the number of firms in
an industry. Overall, the location of a particular industry in each graph is about the
same for the two years. Also, the regression lines show similar slopes in each scatter.
Panel (b) shows a time series of the slope coefficients computed for several years,
Cov(µjt, Intensityjt)/σintensity. These coefficients are about the same over the years.
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Figure 6: Placebo Test. Markups (µ) and Electricity Intensity by Industry.

(a) µ vs Intensity in two periods
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Notes: This figure has two panels. Panel (a) presents two scatter plots between
markups and electricity intensity. Each scatter also shows a regression line. Elec-
tricity Intensity means the intensity a which industries use electricity as expendi-
ture shares. Panel (b) is a time series plot of the regression coefficients. The shaded
gray area is the 95% confidence interval.

4.2 Energy Prices, Average Variable Cost, Markups and
Productivity

Table 6 presents estimates for equation (13) with the electricity prices as the explana-
tory variable rijt. In columns 1 and 2, the dependent variable is the productivity.
In columns 3 and 4, the dependent variable is the markups. Both variables are in
logs and, thus, the estimates represent elasticities. Column 5 reports the estimate for
the first-stage when the price of electricity is instrumented with the natural gas (the
multiplication between the natural log of imports of natural gas and the share by grid-
system, as described in the empirical strategy). Estimates for productivity in columns
1 and 2 are not statistically significant, suggesting that there is no effect of variations
in electricity prices on productivity. Conversely, the estimates for markups in columns
3 and 4 are statistically significant. This result suggest that there is a negative relation-
ship between electricity prices and markups. The value in column 4 indicates that a
ten percent increase in electricity prices leads to a one percent reduction in markups.
However, given the low value of the first stage F-test, this does not seem to be a good
instrument.
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Table 6: Relationship between electricity prices, markups and productivity:
Natural Gas.

Productivity Markups Electricity

OLS IV OLS IV Price
(1) (2) (3) (4) (5)

Electricity Price -0.0014 0.0419 -0.0028 ∗∗∗ -0.1054 ∗

(0.001) (0.050) (0.001) (0.056)

Natural Gas -0.136***
(0.025)

First Stage F 7.07
Observations 46,320 42,468 46,320 44,104 44,468

Notes: This table presents regression coefficients from 5 separated regressions. The first
row describes the dependent variable. Electricity Prices are in logs. Natural Gas means the
instrument from the multiplication between the (natural log of) imports of natural gas and
the share by grid-system, as described in the empirical strategy. Last column reports the first
stage for the Instrumental Variable (IV) research design. The regressions include the (natural
log of) consumption of natural gas, capacity share, year and firm fixed effects, and industry
time trends as controls (no reported). Standard errors are in parentheses and are clustered
by grid-system. Key: *** significant at 1%; ** 5%; * 10%. Source: Author’s calculations using
data from the CNE and the ENIA, Chile.

Similarly, Table 7 presents estimates for equation (13), but using the (natural log of)
average variable costs as the explanatory variable. In columns 1 and 2, the dependent
variable is the (log) productivity, while in columns 3 and 4 is the (log) markups.
Column 5 reports the estimate for the first-stage when the average variable cost is
instrumented with the fuels shift-share instruments. Column 2 suggests that there are
no significant effects on productivity. Conversely, results in columns 3 and 4 suggest
that there is a statistically significant impact of the energy-price induced variations in
average variable cost on markups. Specifically, the estimates in column 3 suggest that
a 10 percent increase in the average variable costs, due to a negative shock in energy-
prices, leads to a 2.5 percent decrease in markups. To put this effect into perspective, if
the average value of markups is about 1.05, thus, a decrease in markups of 2.5 percent
would mean a new markup of approximately 1.0, which is the reference value for a
competitive market.
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Table 7: Average variable costs, markups and productivity: Fuel Instrument.

Productivity Markups Average

OLS IV OLS IV Costs
(1) (2) (3) (4) (5)

Average Variable Costs -0.211*** -0.291 0.017*** -0.247***
(0.009) (0.198) (0.003) (0.050)

Electricity Price × Electricity Share 1.964**
(0.943)

Coal Price × Coal Share 1.497***
(0.246)

Oil Price × Oil Share 3.870***
(0.560)

First Stage F 171.8
Observations 45,661 45,661 49,091 49,091 49,091

Notes: This table presents regression coefficients from 5 separated regressions. The first row
describes the dependent variable. Average variable costs in logs. Last column reports the
first stage for the Instrumental Variable (IV) research design. The regressions include the
uninteracted (natural log of) fuel price, fuel share, year fixed effects, firm fixed effects, and
industry time trends as controls (no reported). Standard errors are in parentheses and are
clustered by region. Key: *** significant at 1%; ** 5%; * 10%. Source: Author’s calculations
using data from ENIA and CNE.

The main result for markups in Table 7 may hide important cross-industry het-
erogeneity. Table 8 reports estimates of equation (13) separately for the industries in
the sample. The average variable cost here is instrumented using the fuel shift-share
instruments. The table reveals cross-industry heterogeneity in the estimates. The elas-
ticities vary from a high of -0.55 for Clothing (Textil, Apparel, and Leather) to a low
of -0.01 for Metals and Machinery Equipment. Thus, these estimates suggest that a
10 percent increase in the average variable costs, due to negative energy shocks, leads
to a 3 percent in markups for Food and Beverage, the most representative industry in
Chile. For other industries, such as Wood (related manufacturing products), the same
variation in the average variables costs can be associated with a 1 percent decrease in
markups.
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Table 8: Average variable costs and markups, by industry. IV estimates.

Food Clothing Wood Paper Metals
& (&) & &

Beverages (related) Publishing Machinery
(1) (2) (3) (4) (5)

Average Variable Costs -0.329*** -0.550 -0.104*** 0.353 -0.010***
(0.112) (0.056) (0.019) (0.237) (0.002)

Observations 15,101 7,327 3,340 2,880 8,345

Notes: This table presents regression coefficients from 5 separated regressions. The first
row describes industry. The dependent variable is the (log) markups. Average variable
costs in logs. The regressions include the uninteracted (natural log of) fuel price, fuel
share, year fixed effects, firm fixed effects, and industry time trends as controls (no
reported). Standard errors are in parentheses and are clustered by region. Key: ***
significant at 1%; ** 5%; * 10%. Source: Author’s calculations using data from ENIA and
CNE.

5 Conclusions

In this paper, I study how input-cost shocks affect firms’ markups and productivity.
These two variables are unobservable outcomes that are closely related to the esti-
mation of a firm’s production function. I first present two arguments about why the
commonly applied proxy-variable technique to recover these outcomes may fail. I then
introduce a novel estimator. The rest of the paper presents an instrumental variables
research design that uses variations in energy prices. The two primary sources of ex-
ogenous variations are: (1) a natural experiment, the 2004 Argentine energy crisis; and
(2) a set of shift-share type instruments.

The results in this paper suggest that firms respond to negative cost-shocks by
changing markups. In the case of the empirical application in this paper, the Chilean
manufacturing firms, estimates suggest that energy cost-shocks increase firms’ average
variable costs, and that a 10 percent increase in this variable, leads to a 3 percent
decrease in markups. Conversely, productivity does not seem to be affected by short-
run energy cost-shocks.

The novel econometric technique and also the instrumental variable research de-
sign in this paper may provide an empirical tool to the literature in the Industrial
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Organization interested in market power. Although markups may be larger than one
(perhaps signaling market power), it may be the case that the variations in this vari-
able inform us about the industrial organization environment in which firms operate.
In other words, if, after a negative shock that affects firms’ variable costs, markups re-
main constant, it may be the case that firms have the power to fully pass the negative
shock to the final prices that consumers pay. However, due to limitations in the data,
these kinds of detailed explanations escape to the analysis in this paper, and are left
for future research.
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Appendix A Markups as in De Loecker and Warzynski
(2012) and the proxy-variable technique.

A.1 Markups

This section describes the methodology for calculating markups following De Loecker
and Warzynski (2012). Let Qit denote the physical output Q of plant i in year t and let
Px

it be the input prices with x ∈ {Kit, Lit, Mit}. The associated Lagrange function for
a cost-minimizing firm that makes decisions based on observed Q(Kit, Lit, Mit, ωit) =

F(Kit, Lit, Mit)eωit is

L = ∑
x∈{K,L,M}

Px
itxit + λit (Qit − F(Kit, Lit, Mit)eωit) (14)

The firm’s first-order condition for the variable input M is

∂L

∂Mit
= PM

it − λit
∂F(·)
∂Mit

eωit (15)

Rearranging terms for an optimum where ∂L
∂Mit

= 0, and multiplying by (Mit/Yit)(
PM,itMit

PitYit

)(
Pit

λit

)
=

(
∂Qit(·)
∂Mit

Mit

Qit

)(
1

eεit

)
(16)

Here, λit is the marginal cost of production. Therefore, µit = Pit/λit would be the
firm-specific markup. Additionally, Sm

it = (PM
it Mit)/(PitYit) is the share of materials in

the value of output, and f m
it = (∂Qit/∂Mit)(Mit/Qit) the output elasticity of materials.

Thus,

µit = f m
it (S

m
it )
−1 exp(−εit) (17)

Thus, it is possible to compute a time-varying, plant-level markup by using the
output elasticity of a variable input f m

it and the revenue share of that input Sm
it . The

share Sm can directly be observed in the data and the only unknown variable in this
equation would be the elasticity, f m.
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A.2 Recovering f m
it by using the proxy-variable technique.

To simplify exposition, the general idea in Olley and Pakes (1996), Levinsohn and
Petrin (2003) and Ackerberg et al. (2015) is to follow a two-step process.26 First, the
unknown (productivity) ω is replaced by a nonparametric function on observables.
Second, using the markovian assumption for ω, one can set moment conditions to
find the parameters in the production function.

Step one calls for the possibility of inverting a intermediate inut demand function,
and, therefore, ωit can be ‘proxied’ by a function on kit, lit, mit

yit = f (kit, lit, mit; β) + ωit + εit

= f (kit, lit, mit; β) + M−1(kit, lit, mit; γ) + εit

= Φt(kit, lit, mit; β, γ) + εit

which can be estimated using, for instance, OLS to obtain Φ̂it.

Step two calls for the assumption ωt+1 = E(ωt+1|ωt) + ξt+1 ≡ g(ωt; α) + ξt+1 or

(
Φ̂it+1 − f (kit+1, lit+1, mit+1; β)

)
= g

(
Φ̂it − f (kit, lit, mit; β); α

)
+ ξit+1

and allows to set the identification moment conditions. For instance,

E {ξit+1|Iit} = 0 ⇒ E

ξit+1(β)


kit+1

lit+1

mit
...


 = 0

Hence, it is possible to recover estimates of β, and ,therefore, the elasticity f m
it .

26Wooldridge (2009) reviews the efficiency of the two steps process.
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Appendix B Results using the proxy-variable technique.

Table 9: Production Function Estimation based on the proxy-variable.

ISIC θk θm θl RTS

15 Food products and beverages 0.059 0.521 0.412 0.99

18 Apparel 0.063 0.482 0.373 0.92

20 Wood and of products of wood 0.038 0.560 0.426 1.02

21 Paper and paper products 0.061 0.589 0.459 1.11

22 Publishing, printing and repr. 0.048 0.517 0.389 0.95

24 Chemicals and chemical produc. 0.045 0.624 0.471 1.14

25 Rubber and plastics products 0.044 0.567 0.431 1.04

27 Basic metals 0.044 0.652 0.490 1.19

28 Fabricated metal products 0.046 0.536 0.404 0.99

29 Machinery and equipment n.e.c 0.036 0.537 0.392 0.97

Overall 0.05 0.54 0.41 1.00

Notes: This table presents estimates of revenue production function following
the proxy-variable technique. Source: Author’s calculations using data from
ENIA and CNE.
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Table 10: Markups based on the Proxy-variable.

(% Obs) Median Mean

Panel A. Overall

Total 100 1.15 1.38

Panel B. Export Status

Non-exporters ( 78 ) 1.07 1.29

Exporters ( 22 ) 1.44 1.68

Panel C. By 2-Dig ISIC

Food products and beverages ( 30.5 ) 0.94 1.13

Textiles ( 5.5 ) 1.25 1.46

Wearing apparel ( 5.5 ) 1.22 1.42

Wood and of products of wood ( 6.6 ) 1.11 1.30

Paper and paper products ( 3.0 ) 1.22 1.30

Chemicals and chemical produc. ( 5.6 ) 1.26 1.51

Rubber and plastics products ( 6.3 ) 1.22 1.37

Motor vehicles ( 1.6 ) 1.46 1.67

Furniture ( 4.7 ) 1.31 1.51

Notes: This table presents estimates of markups following De Loecker and
Warzynski (2012) and the proxy-variable technique. Source: Author’s calcula-
tions using data from ENIA and CNE.
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Appendix C International Trade Chile-Argentina
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