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Abstract

While interconnections between banks are crucial for financial stability, they can also
shape industry performance by fostering coordinated behavior, such as herding, benchmark-
ing, or peer-like interactions dynamics. This paper examines the less-explored link between
interconnectedness, measured through the interbank lending market, and banking efficiency.
Using detailed confidential administrative records of Chilean banks’ interbank loans and bal-
ance sheets (2008-2020), we construct time-varying interbank lending networks. We employ
a novel two-step GMM stochastic frontier approach that incorporates network dependence
to estimate bank-level cost efficiency. Our findings indicate that interconnectedness is a
statistically significant factor influencing cost efficiency. Specifically, we estimate a negative
average network dependence parameter, suggesting that network connections are associated
with improved cost efficiency (i.e., reduced inefficiency) in the Chilean case. Decomposing
total inefficiency, we find that network effects account for a median reduction of approxi-
mately 35 percentage points in cost inefficiency relative to idiosyncratic inefficiency. This
result adds a layer to the need for policymakers to monitor banking networks, not only for

their role in financial contagion but also for their potential influence on industry performance.
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1 Introduction

The network of relationships linking financial institutions, particularly evident in interbank lending mar-
kets, forms a critical infrastructure in modern economies (Allen and Gale, 2000; Freixas et al., 2000).
These interactions facilitate the efficient allocation of financial resources, effective management of li-
quidity fluctuations, and risk diversification across participating institutions. While essential for smooth
functioning, this inherent interconnectedness is most widely studied for its potential role in propagating
shocks and generating systemic risk, a focus greatly intensified by events such as the 20072009 global
financial crisis (Jackson and Pernoud, 2021; Glasserman and Young, 2016; Acemoglu et al., 2015). Con-
sequently, much of the academic and policy attention concerning financial networks centers on stability
and contagion.

However, the influence of these networks likely extends beyond crisis dynamics to shape bank behavior
and operational performance during periods of relative calm. While the literature on financial risk
and contagion through networks is vast, considerably less empirical attention has been paid to how
interconnectedness affects other key outcomes, such as bank efficiency and productivity. Several channels
suggest such links are plausible. Network ties might facilitate coordinated behaviors, such as herding
or peer effects, potentially leading banks to reduce information costs by mimicking others. Banks could
also learn from the operational successes or failures of their direct connections, leading to performance
benchmarking (positive or negative) that impacts efficiency. Furthermore, the network structure could
influence market power, the speed of information diffusion, or the pace of technological adoption, thereby
affecting overall industry performance. Exploring these dimensions is important for a better understanding
of the persistent role interconnectedness play in the banking sector.

Despite plausible theoretical foundations, empirical evidence quantifying the impact of interbank
relationships on banking industry performance remains scarce. Methodological and practical challenges
contribute to this gap. Detailed data tracing specific transactions and linkages between individual financial
institutions, crucially linked to their balance sheets, are often confidential and inaccessible. This forces
researchers to rely on aggregated data, simulations, or network proxies (like geographical distance)
that may not capture the true underlying structure of financial interdependence. Moreover, adequately
modeling performance metrics like efficiency while simultaneously accounting for complex network
structures requires novel econometric tools that are still work in progress.

This paper aims to bridge this empirical gap by directly investigating the relationship between inter-
connectedness and bank performance, leveraging unique administrative data from the Chilean financial
system. Specifically, we ask: How does interconnectedness among banks, as defined by interbank lending
network structures, influence their operational cost efficiency?

To investigate this question, we employ a novel empirical strategy combining unique administrative
data with recent advances in the econometric modeling of efficiency analysis. Our data is directly
facilitated by the Chilean regulatory authority of the financial market (the Comision para el Mercado
Financiero - CMF) and is based on detailed daily transaction records from the interbank lending market
(Form C-18, according to local accounting codes) linked to comprehensive monthly bank balance sheet
information (Form MB-2) for virtually all banks operating in Chile during 2008-2020 (NOTE: This



version of the paper is based on a sub-sample 2016-2017 and extending to the full sample is still
ongoing work). This rich data allows us to construct time-varying network adjacency matrices based on
actual lending relationships, overcoming significant data limitations encountered in previous literature.

Methodologically, we employ a two-step Generalized Method of Moments (GMM) estimation ap-
proach, inspired by recent advances in stochastic frontier analysis (SFA) models incorporating spatial
dependencies (e.g., Hou et al., 2023; Chanci et al., 2024). While previous empirical studies often ap-
proximate interconnectedness using geographical distance, we utilize actual lending transactions. This
approach provides a more precise measure of interbank relationships, particularly in the specific banking
context of our study. Our strategy thus enables the estimation of bank-level cost efficiency using a flexible
translog specification, explicitly accounting for interbank network structures and controlling for unob-
served heterogeneity. Additionally, this method avoids the computational complexities associated with
traditional Maximum Likelihood estimation, particularly when dealing with time-varying network effects
in SFA frameworks.

Our empirical analysis suggests that the overall Chilean banking system exhibits relatively high levels
of cost efficiency during the studied period. Crucially, we find that interconnectedness is a statistically
significant factor influencing these efficiency levels. Preliminary results yield an average network depen-
dence parameter estimate (0) of approximately -0.5 within the cost inefficiency model. This negative
estimate indicates that, on average, network connections in the Chilean interbank market are associated
with lower inefficiency (enhanced cost efficiency). Further decomposing total inefficiency, to assess the
relative importance of this network effect, we find that it accounts for a reduction of approximately 35
percentage points in cost inefficiency for the median bank-period observation, relative to the bank’s id-
iosyncratic inefficiency. These findings align with potential mechanisms involving competitive pressures
or benchmarking opportunities within the network. These results also highlight that fostering a well-
functioning, efficient banking system through understanding network dynamics is not merely a secondary
policy objective but a key component supporting overall economic performance and stability.

This study contributes to the literature in several respects. Firstly, it provides direct empirical evidence
linking actual interbank networks to operational performance, expanding the discussion beyond traditional
systemic risk and contagion analyses. Methodologically, it exemplifies the application of advanced SF
techniques incorporating network dependencies utilizing granular administrative data. From a policy
perspective, our results emphasize the importance of monitoring banking network structures not only for
their implications regarding financial stability and shock propagation but also for their tangible influence
on the fundamental cost efficiency and operational health of the banking sector. Thus, fostering a well-
functioning, efficient banking system is critical for overall economic performance, and understanding the
role network dynamics play in achieving this efficiency merits ongoing attention from researchers and
policymakers alike.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature. Section
3 details the econometric methodology. Section 4 describes the data and variable construction. Section 5
presents the empirical results, including the efficiency estimates and decomposition analysis. Section 6
discusses the findings and concludes with policy implications.



2 Related Literature

Our paper relates to and contributes to several distinct strands of literature. First, our research engages
broadly with the extensive body of work examining the crucial role and multifaceted implications of
financial interconnectedness (Acemoglu et al., 2012; Glasserman and Young, 2016; Elliott et al., 2014;
Allen and Gale, 2000; Freixas et al., 2000). A central theme in this literature is the inherent trade-off within
financial networks. On the one hand, interconnections facilitate vital banking functions such as efficient
liquidity management, payment settlements, and risk diversification across institutions. On the other
hand, a densely interconnected financial system may increase susceptibility to systemic risk and cascading
failures, potentially exacerbated by institutions being ‘too-connected-to-fail.” While acknowledging the
significance of network structures highlighted by this literature, our study extends the analysis beyond
systemic risk to empirically explore a less-studied yet critical economic outcome—banking performance,
specifically cost inefficiency—during periods of economic stability.

Second, our paper contributes to the literature on peer effects and herding in finance. Drawing
insights from this literature (e.g., Manski, 1993), it is often conjectured that banks may gain efficiency by
reducing information costs through imitation or learning from their peers. For instance, the foundations
of herd behavior, where decisions are influenced by the actions of other banks rather than solely by private
information, are theoretically reviewed by Scharfstein and Stein (1990) and Bikhchandani et al. (1998).
These authors emphasize informational cascades where banks follow peers to benefit from perceived
superior information or expertise (see also, Banerjee, 1992). Empirically, Margaretic et al. (2021), a
work closely related to ours, provide relevant evidence of peer effects from the Chilean interbank market,
documenting how decisions by some lenders to reduce exposure to a stressed bank were mimicked by
others.

We aim to contribute to this literature by extending the implications of peer effects beyond behavioral
contagion to quantifiable changes in bank operational performance. Thatis, unlike Margaretic et al. (2021),
who focus primarily on modeling the structural dependencies in lending behaviors using balance-sheet-
defined peer characteristics, our work centers on how these interconnections affect a specific performance
outcome—cost efficiency—estimated through a stochastic frontier approach. Thus, we take a different
route by proposing how to include interconnectedness directly into an econometric model of efficiency
analysis and by empirically providing estimates of the magnitude of banking interconnections’ role.

Third, our paper also aligns with prior research linking networks and banking performance (e.g.,
Silva et al., 2018, 2016; Elliott et al., 2014). This literature identifies potential channels through which
interconnectedness can enhance operational efficiency, such as improved liquidity management, opera-
tional specialization, outsourcing via network partnerships, or accelerated diffusion of information and
technological advancements. Nonetheless, empirical evidence remains limited. For instance, Silva et al.
(2016) represents one of the few studies directly examining the influence of interbank network structures



on bank productivity. They investigate how core-periphery financial network structures affect bank cost,
profit, and risk-taking efficiency, initially estimating bank efficiencies through stochastic frontier analysis
and subsequently regressing these efficiencies on network topology measures. Their findings suggest
that core-periphery structures are positively associated with cost efficiency but negatively associated with
risk-taking efficiency. While insightful, our study differs fundamentally in its econometric modeling
approach. Rather than using aggregated network statistics as explanatory variables in a stochastic frontier
model, we draw on models of social interactions and incorporate network dependencies directly into the
composite error term of the stochastic cost frontier (via the adjacency matrix, W;). This approach enables
a contemporaneous modeling of how a bank’s (in)efficiency is directly influenced by that of its network
peers through interbank lending, offering a more precise and structurally grounded assessment of network
effects on efficiency.

Fourth, our paper offers contributions related to data and econometric methodology. Given the
challenges posed by confidentiality in accessing detailed banking transaction data, interconnectedness has
historically been approximated using proxies such as correlations in portfolios, common asset holdings,
or geographical proximity, which may not always adequately capture actual financial linkages. In contrast,
our use of granular interbank loan transaction data provides a precise measure of both the strength
and directionality of financial relationships, directly addressing limitations previously highlighted in the
literature (see, for instance, the discussions in Das et al., 2022; Brunetti et al., 2019).

Finally, considering that the Stochastic Frontier Analysis (SFA) framework is a standard approach in
efficiency measurement due to its flexibility and robust theoretical foundation (e.g., Kumbhakar et al.,
2015), our study innovatively extends recent advancements in SFA that incorporate interconnections. We
build upon methodologies presented in Hou et al. (2023), Kutlu et al. (2020), Glass et al. (2016), and
Tran and Tsionas (2023). In particular, we adapt the two-step GMM estimation strategy proposed by
Hou et al. (2023) for semiparametric spatial stochastic frontier models and its application in Chanci et al.
(2024) to a panel data model with fixed effects. While these works typically focus on frameworks based
on production functions with a single output and proxy interactions with geographically based spatial
weights, our methodological innovation extends their approach to a multi-output banking cost function
context, incorporating time-fixed effects and using an alternative measure of interconnectedness based
on actual financial transactions. This methodological refinement allows for more accurate modeling and
assessment of network dependencies within the context of banking cost efficiency.

3 Empirical Strategy

We adopt a widely used approach in the banking performance literature by estimating a stochastic cost
frontier model (e.g., Mamonov et al., 2024; Hughes et al., 2019; Tabak et al., 2012; Kumbhakar and
Lovell, 2000). However, we extend the traditional econometric specification of the inefficiency term by
explicitly incorporating interactions among banking units. In doing so, we leverage the richness and



temporal variation present in our dataset, enhancing our identification strategy. This section outlines the
empirical framework and estimation approach that we propose.

3.1 Econometric Specification

The cost function We begin by defining the translog stochastic cost frontier model, drawing from the
extensive literature on bank efficiency analysis. In this setting, cost efficiency is defined as a bank’s ability
to minimize costs given its output volume (y), the factor input prices it faces (p), and a set of quasi-fixed

inputs (z). The translog stochastic cost function for bank i, where i = 1,..., N, in time period ¢, where
t=1,...,T,is specified as follows:
InCostiy = a; + TL(Yir, Dit» Zir; B) + &ir (D

where Cost;; represents the variable cost of bank 7; a; is a time-fixed effect to control for macroeco-
nomic shocks and inherent time heterogeneity, including potential shifts in the cost frontier; TL(-) denotes
the translog cost frontier; y is a vector of outputs (e.g., loans and other income-generating activities); p
is a vector of input prices; and the vector z represents quasi-fixed inputs, including equity, which, owing
to its limited time variation, effectively functions as a bank-specific fixed effect, thus mitigating unob-
served heterogeneity across banks. The vector 3 represents the parameters to be estimated. Furthermore,
to ensure comparability across banks, and in line with standard assumptions in empirical cost function
estimation, both cost and input price variables are normalized by one input price (p1;;).

Interconnectedness and efficiency In the stochastic frontier literature, the error term &;;, in equation
(1) is decomposed into two components (Kumbhakar and Lovell, 2000; Kumbhakar et al., 2015): a
standard noise term v;; and a non-negative inefficiency term u;,. We build on this framework and follow a
standard model of social interactions to incorporate network effects among banks. Specifically, we model
the composite error term &;; = v;; + u;; as a function of a weighted combination of the composite errors
of other banks, using an N x N adjacency matrix W;. Formally, we specify:

& pW:es + &4, 2)

Eir Vit + Uiz,

where the N X 1 vector &, depends on W, &,, a weighted combination of the inefficiency components of
other banks to which bank i is financially connected. The matrix W, captures the degree of interconnect-
edness, where the elements w;; represent the weight assigned to the influence of bank j’s outcomes (i.e.,
inefficiency) on those of bank i. These weights are predetermined and non-stochastic, with the standard
restriction w;; = 0 fori = j.

Since u;, in the stochastic frontier literature is inefficiency (Kumbhakar and Lovell, 2000; Kumbhakar
et al., 2015), and, since we use the stochastic frontier as a tool for modeling banking performance, we



rely on the standard assumptions in the stochastic frontier literature. These are: v;; and u;; are both i.i.d.,
and that u;; ~ N*(0, 0'3) and v;; ~ N(O, (TE). The notation N* means positive values of the normal
distribution, also known as a half-normal distribution.

Our overall model’s foundational structure draws from established econometric frameworks. Specif-
ically, it mirrors frameworks common in spatial econometrics (Elhorst, 2014; LeSage and Pace, 2009;
Pace and Barry, 1997), where terms such as W,&, —often expressed component-wise as . WijEjr—
represent the endogenous spatial lag of a variable like £. Similarly, recent stochastic frontier models,
for example by Hou et al. (2023), have incorporated comparable dependence structures. Our model
therefore aligns with these econometric traditions. Furthermore, it connects with the broader literature on
peer effects, which often utilizes adjacency matrices based on various definitions of proximity, extending
beyond simple geographic distance to capture more nuanced interactions.

While our econometric specification shares similarities with these established approaches, and our
estimation strategy (detailed below) builds upon recent work by Hou et al. (2023) and Chanci et al. (2024),
a key distinction and contribution of our study lies in the construction of the weighting matrix. Rather
than relying on geographical proximity or other indirect proxies common in the literature, we leverage
detailed administrative data on interbank loan transactions to define W;. This approach allows for a more
direct and economically meaningful measure of interconnectedness, capturing actual financial linkages
and their varying strengths.

A further significant novelty of our approach is the utilization of a time-varying adjacency matrix,
made possible by the rich temporal dimension of our data. Many empirical studies employing network
structures assume a static, often constrained by data limitations or a focus on identifying long-term, stable
interactions (see, e.g., Margaretic et al., 2021, for a discussion on using a single connection matrix).
In contrast, we exploit the granularity of our interbank transaction data to allow W, to evolve monthly.
This dynamic specification is crucial for capturing the changing nature of interbank connections, thereby
yielding a more realistic depiction of network effects and potentially enhancing the model’s identification.
By integrating both the precise definition of network links and their time-varying nature, our approach
offers a comprehensive view of how interbank relationships influence cost efficiency in the banking sector.

3.2 Estimation strategy

Given that a model can be consistently estimated when it is identified, we proceed directly to estimation,
rather than addressing identification and consistency issues individually. In particular, for the estimation
we follow Hou et al. (2023) and Chanci et al. (2024) and employ a two-step Generalized Method of
Moments (GMM) estimation technique for stochastic frontier models involving interactions across units.
This GMM framework presents notable advantages over Maximum Likelihood (ML) estimation in this
context. Firstly, unlike the Maximum Like ML method, this approach avoids making full distributional
assumptions. Secondly, it circumvents significant numerical optimization complexities associated with
ML, such as the requirement for high-dimensional numerical integration within the log-likelihood function



or the computational burden arising from a time-variant spatial weighting matrix.!

The two-step approach we implement can be summarized as follows: First, we leverage the panel
data structure to transform the model and employ a cross-sectional demeaning (or ‘between’) estimator,
thereby avoiding strong initial distributional assumptions. Second, we compute pseudo-residuals from
the first-stage estimation. These pseudo-residuals are then used to recover estimates of (in)efficiency,
incorporating the adjacency matrix. This step is conducted using GMM, where the moment conditions
are based on distributional assumptions for the noise and inefficiency terms. In what follows, we discuss

these steps in detail.

3.2.1 First step - Transformation

The model in Equation (1) does not satisfy the standard assumption of classical regression models that the
expected value of the error term is zero. Specifically, when u;; follows the structure defined in Equation
(2), the composite error &;; = v;; + u;; has a non-zero expectation: E[g;;] = E[v;; + u;s] = E[u;], which
represents the mean inefficiency level.

Nonetheless, although the error mean is non-zero, it is possible to rewrite the model by absorbing this
term into a time-specific intercept. The model from Equation (1) then becomes:

In Costi; = a; + TL(Yir, Pir» zir; B°) + 5;7 €))

where the parameter vector 3" now excludes the original intercept Bg; the new time-specific intercept
is af = Bo + a; + E[u;]; and the transformed error term is &, = v;; + u;; — E[u;;]. Therefore, by
construction, E[&},] = 0, and the resulting model belongs to the family of panel data models (i.e., a panel
cost function featuring time-specific effects, where time-invariant individual heterogeneity is primarily
accounted for by including quasi-fixed inputs, rather than via separate individual-specific intercepts).

Considering that the fixed effects are nuisance parameters in our case, and given that the time
dimension, 7', in our dataset is large, we rely on a within-time transformation rather than using time
dummy variables for the time fixed effects. Hence, we first employ a transformation approach to eliminate
the time effects in equation (3). Let Q = (Iy — (1/N)tnty,) be the N X N matrix used to compute the
demeaned variables in the within-time transformation, as established in the panel data literature (e.g.,
Baltagi, 2021), where ¢ is an N X 1 vector of ones. In this way, one can remove the time effects @; using
Q. Specifically, let us denote a vector variable with a tilde as the result of pre-multiplying the vector by
Q. For instance, z; is an N X 1 vector, resulting from Qz;, where z; = (z1s, ..., 2n7)".2 Applying this
transformation to Equation (3) eliminates the time-specific effect @;. Thus, since the translog function
TL(-) is linear in the parameters 3%, and the Q transformation is a linear operator, the resulting model

1If W, enters the likelihood function via the error structure (e.g., through terms involving (/- pW,) ! that must be
computed for each time period ¢), it substantially complicates the ML optimization compared to the moment-based
GMM approach used here.

2This is also equivalent to Z;; = (zi; — z.;), where z, = N™* ¥, z;; .



remains linear in 3*:
In Cost; = ZBZ)?M +E; “4)
k

where the regressors th are the transformed versions (QXy,) of each vector Xi; representing a
term required by the translog specification (e.g., vectors of element-wise logs like In y;;, squares like
(In y,-t)Q, or cross-products like In y;; In p;;), constructed from the original data vectors (y;, ps, 2;). As
the transformed error & = Qe&j retains the zero-mean property (since E[e;] = 0), Equation (4) satisfies
the requirements for consistent estimation of 3* via Ordinary Least Squares (OLS). Therefore, applying
OLS yields the first-stage estimates ,é* of B* without using distributional assumptions on v;; and u;;,
avoiding computational challenges associated with the ML method.

3.2.2 Second step: GMM estimation

The second stage of our estimation procedure utilizes the parameter estimates B* obtained from the first
step. Recalling Equation (1):

In Costiy — TL(Yir, Pir» zir; B7) = o + @y + vir + iy
We construct the pseudo-residuals, denoted by e;;, using the first-step estimates ﬁ*:
eir = In Costy, — TL(Yir, Pir, Zir; B7) )

These pseudo-residuals approximate the composite error term plus the intercept and time effects,
eir = Po+ay+vi+u;;. Asestablished earlier, we can decompose the right-side of this expression into a time-
specific mean component a; = (Bo+a;+E[u;;]) and a zero-mean error component &}, = (vi;+u;; —E[u;]).
Thus, e;; ~ a; + &},. Since by construction E[g],] = 0, the time-specific mean component «; can be
consistently estimated by the cross-sectional average of the pseudo-residuals for each period ¢.

These pseudo-residuals approximate the composite error term plus the intercept and time effects,
eir ~ Bo+ a; + vy +u;. As established earlier, we can decompose the right-side of this expression
into a time-specific mean component @; = (B + a; + E[u;/]) and a zero-mean error component &}, =
(vit + uir — E[u;]). Thus, e;; =~ af + &},. Since by construction E[&},] = 0, the time-specific mean
component «; can be consistently estimated by the cross-sectional average of the pseudo-residuals for
each period t: @ = N~ 3, e;;. In what follows, we use this estimate & to obtain residuals suitable for
estimating the (in)efficiency structure. In particular, we define the adjusted residuals e;; by removing this
estimated time-specific mean: é;; = e;; — &,;. Thus, substituting the approximations yields the central

equation for the second stage:
€ir = Vir + uir — Elu;¢] (6)

Equation (6) represents a Stochastic Frontier (SF) model structure based on these adjusted residuals
;. Here, v;; is the two-sided random noise and (u;; —E[u;,]) is the (mean-shifted) one-sided inefficiency



term. Therefore, the second-stage GMM procedure can use distributional assumptions on the underlying
components v;; and u;, (particularly their network-independent counterparts v;;, ii;;) to formulate moment
conditions for estimating the spatial parameter p, the variance parameters 0'3 and 0'3, and the mean
inefficiency E[u;,].

As mentioned, given that our model specification in Equation (2) incorporates dependency in banking
performance via the time-variant weights matrix W;, the ML estimation for the becomes complex. Thus,
we closely follow the estimation approach proposed by Hou et al. (2023) (henceforth, HZK). They pro-
pose GMM estimation for a semiparametric stochastic frontier model incorporating spatial dependence.
Although their model features functional coefficients while our specification uses constant parameters (in-
cluding fixed effects), the dependence structure applied to the second-stage error components is analogous,
allowing the adaptation of their GMM procedure.

In short, the GMM estimation identifies the structurally dependence parameter p and the variance
parameters (0'3, 0'3) associated with the underlying structurally independent noise (v;;) and inefficiency
(u;;) components. This relies on exploiting moment conditions derived from the distributional assumptions
on v;, and i;;. In particular, let S(p, W;) = (In — pW;)~!. Thus, under the assumption that i;; has a half-
normal distribution independent of v;;, the second-moment condition based on the variance-covariance
structure of €, = v, +u, = (Iy — pW,) "1 (&, +1,) = S(p, W) (&, + 1) is:
o2+ (1 - %) o2

V(er) =V(S(p, W) (¥ + 1)) = S(p, W) (S(p, Wz))T @)

The sample counterpart for the N X N theoretical variance-covariance matrix V(g,) is constructed
for each time period ¢ using the adjusted residuals &, = (€1s,...,en;)" from Equation (6). Thus, as
E[e;;] = 0, the time-specific sample variance-covariance matrix is calculated as V, = e;e/. According
to HZK, leveraging the principle of minimum distance estimation, the unknown parameter vector 6 =
(o, 0'3, 0'3) can be estimated by minimizing the distance between these sample covariance matrices vV,
and their theoretical counterparts V(g;; @) over time. Specifically, the parameters are chosen to minimize
the GMM objective function:

T
min 0(6) = m@i“; IV, - V(e 0|7 ®

where ||| denotes the Frobenius norm, and V(e,; ) is the theoretical variance-covariance matrix
defined in Equation (7).

Furthermore, considering that practical optimization of Q(#) may encounter challenges such as
multiple local minima or irregular objective function surfaces, we adopt a improved deviation from HZK
regarding the numerical computation of 8. Specifically, we enhance numerical stability and efficiency
by noting that the estimation must respect the constraint |p| < 1, associated with the invertibility of the
S(p, W;) term. We thus implement a grid search strategy, widely used in the spatial econometrics literature
(see, e.g., Elhorst, 2014, 2010; Pace and Barry, 1997). This involves a grid search over the permissible
range p € (—1,1). For each candidate value p; from the grid, the GMM objective function Q(p;, 0'3, 0'3)



is minimized with respect to o2 and o2 to obtain conditional estimates 6-2(p;) and 6-2(p;). The optimal
estimate p is then selected as the value p; that yields the minimum value of the GMM objective function
in Equation (8) across all tested grid points, along with its corresponding conditional estimates 6'3 (p) and

52(p)2

3.2.3 Post-Estimation Calculations

Once the GMM estimation yields consistent estimates of the parameters p, Erf, and 6'3, further quantities
of interest can be derived.

First, we estimate the mean inefficiency component E[u;,]. This calculation utilizes the estimate 6’3
and the distributional assumption made for the underlying network-independent inefficiency component
j;. Given that u;, follows a half-normal distribution (implying E[%,;] = +/2/7n6tn), the estimate
incorporating the network multiplier is given by Eui]:

A~

2, .
Elui:] = E[us]| = \/jO'uTiS(,& Wiin
(0=p, ou=64) V4

where ¢y is an N X 1 vector of ones, and 7; is a 1 X N row vector selecting the i-th element. Since in our
application the weights matrix W; is row-normalized for each ¢, the mean (in)efficiency is a constant term.
Second, we recover estimates of the combined constant and time fixed effects, which will be later
used in the computation of the standard errors. Recalling the estimated time-specific component @; = ¢,
which consistently estimates a; = Sy + @; + ¢, one can compute: (m) =af - Elu;].*
Third, following HZK’s adaptation of Jondrow et al. (1982) (JLMS), we predict the bank-specific
inefficiency component. This term is defined by the conditional expectation of the underlying network-

independent i;, given the underlying network-independent composite error &;;:

¢(—pi;, /o)

_ 9
1= 0(-, /o) ®

fir = Bluie|€i] = pj, + 0

where uf, = é;;02 /(02 +02) and 0, = \/0'30'3 /(02 + o°2), using the estimated variance parameters.

The unobserved &;; required for Equation (9) is obtained via the relationship &, = (Iny — pW;)e;.
Thus, we approximate the unobserved vector €, = v, + u, by combining the adjusted residuals with the
estimated mean inefficiency according to Equation (6), €; ~ é; + E[u,]. Subsequently, we compute the
estimate &,. The i-th element of this vector, &, is then plugged into Equation (9) to obtain the conditional
estimate fi;; = Em] The final prediction of the actual inefficiency term is constructed from these

estimates using the specific network transformation, Inefficiency, = i, = S(p, W;) * [L;, as detailed in

3To efficiently locate the minimum, we first employ a coarser grid for p (e.g., using 0.1 increments) to find an
initial optimum, followed by a finer grid search (e.g., using 0.001 increments) in the neighborhood of that initial
value. This vectorized grid search approach, potentially combined with parallel computing techniques, speeds up
the estimation within the GMM framework.

4Separating the overall constant Sy from the individual time effects @, would require an additional normalization
constraint (e.g., ), @, = 0), which is not pursued here.
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HZK.

Finally, we conduct a decomposition of (in)efficiency estimates that offers valuable insights into
the relative importance of internal factors versus interconnectedness in determining observed banking
performance. Specifically, considering that total bank inefficiency is related to underlying network-
independent components via S(p, W;)f1;, we can decompose the estimated total cost inefficiency into
effects originating from the bank’s own underlying inefficiency component and effects spilling over from
other banks through the network (e.g., peer effects). Let the total inefficiency for bank i at time ¢ be
Zj-v:l S ]ﬁ jz» where s;; is an element of S(p, W;). This sum can thus be separated into two terms as
follows:

Total Inefficiency,, = s;; ﬁit + Z Sij /1 j+ = Direct Effect;; + Indirect (Network) Effect;,
J#i
Thus, the Direct Effect isolates the impact of a bank’s own underlying inefficiency, scaled by the
feedback effect s;; from the diagonal of the multiplier matrix S. The Indirect Effect, on the other hand,

captures the net influence of all other banks’ underlying inefficiencies propagated through the network via
the off-diagonal elements (s;;) of S.

3.2.4 Computation of Standard Errors via Wild Bootstrap

Given the multi-step nature of our GMM estimation procedure for the stochastic cost frontier with
interconnectedness, deriving analytical standard errors is complex. Therefore, we employ a wild bootstrap
approach to assess the sampling variability of the estimated parameters (0, 0, and ;. This method is
well-suited for models with complex error structures and potential heteroskedasticity, and its applicability
to spatial models has been already discussed (see, e.g., HZK for simulation results in a related GMM
framework, and Goncalves and Perron, 2020, for wild bootstrap with cross-sectional dependence).

Our wild bootstrap procedure is adapted to the specific structure of our model, where the composite
error g;; is transformed into an underlying, network-independent structural error &;; via the relation
g = (In — pWy)e,. The core idea is to resample these estimated network-independent residuals &i. In
particular, for each bootstrap replication b = 1,. .., B, the procedure is as follows:

1. Generate bootstrap multipliers: We generate a vector of bootstrap multipliers £?) of dimension
NT x 1 (where N is the number of banks in period ¢, and NT is the total number of observations).
These multipliers are drawn independently from the Mammen (1993) two-point distribution:

@ _ | —(¥5—=1)/2  with probability p = (V5 +1)/(2V5)
" (V5+1)/2  with probability 1 — p

The estimated underlying structural residuals £;; are then perturbed to create bootstrapped structural

residuals: éftb) = &t ‘fi(tb)-

2. Construct bootstrapped dependent variable: Using the parameters from the initial estimation
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®).

(Bo + a;, B*, and p), we construct the bootstrapped log-cost variable, In Cost;,

b - A N —1 2(b
InCost” = (By + ar)en, + TL(ys, b1, 26 B7) + (In — pW;) "L EP)

3. Re-estimate parameters: The full two-step estimation procedure, as outlined in Section 3, is
(b)

applied to the dataset with In Cost;, as the dependent variable.

This entire process is repeated B times and the standard error for each parameter 6 € {p, o, 0y;} is then
calculated as the empirical standard deviation of its B bootstrapped estimates.

4 Data

Our research utilizes a granular dataset combining detailed records from the Chilean interbank lending
market with bank-specific balance sheet characteristics. Access to this confidential administrative data,
provided by the Chilean Financial Market Commission (CMF), enables a precise analysis of banking
interconnectedness and its impact on performance. As previously noted, our dataset addresses common
limitations identified in the literature, where researchers often lack direct measures of micro-level linkages
and instead rely on aggregated data or proxy approximations.>

Although Chile is a relatively smaller economy compared to global financial hubs such as the United
States or Europe, its banking system provides an ideal context for investigating the role of intercon-
nectedness in bank performance for several reasons. First, despite comprising a limited number of
institutions—our sample includes 20 banks, virtually representing the entire sector—the Chilean banking
system is mature, relatively concentrated, and plays a substantial role proportional to the overall economy
(Margaretic et al., 2021). Such characteristic enhances the visibility and measurability of network dynam-
ics and their effects on individual institutions. Second, and crucially for our empirical strategy, Chile offers
exceptional access to detailed administrative datasets. These comprehensive datasets enable the accurate
construction of real interbank lending networks using daily transaction records and detailed monthly
balance sheets over an extended period (e.g., 2008—2020 in our full dataset). Thus, the high-frequency
monthly data introduces a rich temporal dimension (7'), resulting in a substantial and informative panel
dataset. This dataset allows for robust analysis of dynamic network effects and efficiency, offering insights
often unavailable from larger systems with less comprehensive data.

Information on interbank exposures is obtained from regulatory reports submitted by all active banks
in Chile to the CMF. Specifically, we use Form C-18, titled Daily Balances of Obligations with Other
Domestic Banks (Saldos Diarios de Obligaciones con Otros Bancos del Pais, in Spanish), which details all
daily bilateral exposures between institutions. These reports are comprehensive, categorizing obligations

5Due to confidentiality concerns, initial model development and preliminary analyses were conducted using
anonymized data that preserves essential statistical properties while safeguarding bank identities. Final computa-
tional analyses using the complete, non-anonymized dataset were executed exclusively by authorized CMF personnel
to ensure data security and confidentiality. External researchers, therefore, did not have direct access to sensitive
identifying information.
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across a range of financial instruments, including current accounts, other sight obligations, repurchase
agreements, term deposits, and financial derivative contracts. Furthermore, the data differentiates expo-
sures by residual maturity using three specific categories: sight obligations, obligations with maturity up
to one year, and obligations with maturity over one year. The data also classifies each obligation by its
currency of payment, distinguishing between non-indexed Chilean pesos, indexed domestic currency, and
foreign currency.

For the main round of results presented in this paper, we construct the weights matrix (W;) using a
comprehensive measure of total interbank obligations. The weight of the connection between any two
banks is defined as the sum of all reported financial instruments (including term deposits, repurchase
agreements, and derivatives) across all available maturity categories (sight, up to one year, and over one
year). Consistent with the C-18 reporting structure, our network is directed, with edges running from the
borrower (the reporting institution) to the lender (the creditor institution). After aggregating the data to a
monthly frequency, we apply a row-normalization to the resulting time-varying adjacency matrices. This
is a standard and effective way to measure the relative importance of each lender to a specific borrower,
as the normalized weight represents a lender’s share of a given borrower’s total obligations.

While this comprehensive matrix based on total obligations forms the basis of our core results, we
leverage the granularity and depth of our administrative data to explore alternative specifications of W;
in a subsequent section. These alternative settings—which consider different combinations of financial
instruments and maturities, alternative normalization methods, and the reverse lender-to-borrower direc-
tion—serve as both robustness checks and a method for analyzing potential transmission channels. The
ability to construct and test these varied network specifications using direct, dynamic, and detailed trans-
action data provides a uniquely rich framework for analyzing the multifaceted role of interconnectedness.

Complementing the interbank exposure data, we employ comprehensive bank-specific financial infor-
mation from monthly balance sheets submitted to the CMF (Form MB-2). These reports provide detailed
information on each bank’s financial position, operational activities, and risk profiles.

The final dataset is constructed as a monthly panel that combines bilateral interbank exposure
data—used to define the network structures (W,)—with detailed bank-specific balance sheet variables
for the full set of the 20 most important banks operating in Chile. This rich, panel-structured dataset
allows for robust empirical analysis of banking performance through advanced econometric techniques
designed for panel and network data, while effectively controlling for bank heterogeneity and time-specific
effects.

Note: Although our full dataset spans from 2008 to 2020, covering virtually the entire Chilean
interbank market, this preliminary analysis (working paper) utilizes data for the period from January 2016
to December 2017. To ensure comparability over time, all nominal variables have been deflated using the
Chilean Consumer Price Index (CPI), with 2018 as the base year.

4.1 Variable Definitions for the Cost Function Estimation

Following the standard intermediation approach in the banking literature (e.g., Sealey Jr and Lindley,
1977; Malikov et al., 2015), we define bank outputs, inputs, and input prices based on the balance sheet

13



information derived from the CMF data.

Table 1: Variable Definitions and Statistics

Variable Description

Outputs (y)

V1 Commercial loans

Yo Real estate loans (Mortgages)
V3 Consumer loans

V4 Securities and other investments

Inputs (x) and Prices (p)

X1 Labor

X2 Physical capital (Fixed assets)

X3 Deposits and other borrowed funds
P1 Labor price

P2 Physical capital price

Ps3 Price of funds

Quasi-fixed Input (z)
u Equity capital

Cost Variable (C) Total variable operating cost

Notes: The table reports the definitions and construction of the variables employed
in the stochastic frontier cost function estimation.

We specify four output categories representing key earning assets: commercial loans, real estate loans,
consumer loans, and securities and other investments. All outputs are measured in real Chilean Pesos of
2018.

Variable inputs include labor, measured by total personnel expenses and number of employees;
physical capital, represented by the book value of fixed and leased assets; and borrowed funds (including
deposits). Input prices are computed by dividing the respective expenses by the input quantities.

We include equity capital as a quasi-fixed input to control for bank heterogeneity and scale. Total
variable operating cost is constructed as the sum of interest expenses, commissions, personnel expenses,
and selected administrative expenses, excluding depreciation to avoid double counting with the capital
input price.
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5 Results

5.1 The Cost Function and Network Dependence

As previously discussed, while the first-stage allows us to obtain the central parameters in the empirical
cost function, 3, the second-stage GMM estimation enables the quantification of the average degree of
interdependence in bank cost performance deviations, through the parameter p, and the key standard
deviations in the Cost Function. Given the large numbers of terms in the vector, and as it is common in
the literature, for the estimated trans-log cost function we mainly report key associated results, such as the
standard deviations that allow the differentiation of the two components in the composited residual and
the computation of the estimates of cost efficiency.

Our estimation, reported in Table 2, yields p = —0.542, which is statistically significant. The negative
estimate indicates a negative correlation in inefficiency deviations among interconnected banks. In other
words, a bank linked to peers exhibiting higher-than-average inefficiency tends to show lower adjusted
inefficiency itself. This pattern suggests that banks connected to less efficient neighbors, on average,
operate more efficiently relative to their own expected cost levels. Such a finding is consistent with the
notion that banks may face competitive pressures or engage in negative benchmarking—improving their
efficiency by observing and avoiding the mistakes made by underperforming peers. These dynamics point
to meaningful network effects, potentially driven by strategic responses to peer underperformance or by
negative learning mechanisms, wherein banks adapt their strategies after witnessing adverse outcomes
among their counterparts.

In the following subsections we present relevant post-estimation results, including bank-level ineffi-
ciency scores and a decomposition of the relative contributions of direct and network effects to overall
performance. We conclude by exploring potential mechanisms underlying the observed negative network
dependence.
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Table 2: Results for the central parameters

Baseline Model

Based on

Total Obligations

Panel A. Interconnectedness parameter

p -0.542 =
0.112)
Panel B. Cost frontier main parameters
oy 0.013 ***
(0.005)
o 0.102 ***
(0.011)
Controls in the Translog Cost Function Yes
Time fixed effects Yes
Observations 418

Notes: 1. The table reports the central results for the parameters in equations
(1) and (2). The ‘Controls in the Translog Cost Function’ row indicates the
inclusion of all first-order, second-order (squared), and interaction terms for
outputs, input prices, and quasi-fixed inputs as specified in the translog cost
function T L(y;;, pir, zir; 3%) in equation (1). 2. Data: Chilean banking system
(2016m1-2017m12). 3. Standard errors (in parentheses) computed via wild
bootstrap. 4. *** significant at 1%; ** 5%; * 10%.

5.2 Baseline Banking Performance: Cost Efficiency Levels

We first briefly present the baseline estimates of banking cost efficiency derived from our stochastic cost
frontier model. This initial overview serves to characterize the general performance landscape of the
Chilean banking industry and to verify that our estimates, despite the econometric novelties introduced,
align broadly with findings from previous research on this sector.

Figure 1 illustrates the empirical distribution and temporal evolution of the technical efficiency scores,
calculated as TE;; = exp(—f;;), where fi;; is the estimated cost inefficiency presented in subsection 3.2.3.
Panel (a) of the figure shows the kernel density estimate of these scores, and Panel (b) presents a time
series of monthly boxplots illustrating their distribution. The results suggest that the Chilean banking
system generally operates at high levels of cost efficiency. The scores are predominantly concentrated
towards the upper end of the scale, with a central tendency suggesting typical efficiency levels around
90% (i.e., a TE score of approximately 0.9). While exhibiting some cross-sectional heterogeneity, these
efficiency levels are relatively stable over the observed period. These initial findings are consistent with
other empirical assessments of the Chilean banking industry (e.g., Cobas et al., 2024), which supports our
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model’s baseline characterization of bank performance as a necessary preliminary step before analyzing
network effects.

Figure 1: Technical Efficiency Scores

o
©
R R S
I
L

(Kernel) Density
Banking Cost Efficiency Scores
o
®

[—
[
o
[

=)
3

0.7 0.8 0.9 1.0
Banking Cost Efficiency Scores Period

(a) Distribution (b) Temporal Evolution

Notes: The figure has two panels and presents the Distribution and Temporal Evolution of Bank Technical
Efficiency Scores (2016m01-2017m12). Panel (a) displays the kernel density estimate of technical
efficiency scores pooled across all banks and months in the sample period. Panel (b) presents a time
series of monthly boxplots, illustrating the distribution of these scores for selected months. Technical
efficiency scores (TE;,) are calculated as the exponential of the negative estimated cost inefficiency term,
i.e., TE,’; = exp(—ﬁ,-,).

5.3 Interconnectedness and Banking Performance

The statistically significant network dependence parameter (p) presented in Table 2 provides initial em-
pirical evidence for the role of interbank interconnectedness in shaping banking performance within our
dataset, an overall result that aligns with previous findings on peer effects (Margaretic et al., 2021). A
key novelty of our econometric approach, however, is its ability to leverage this estimated parameter and
the weights matrix (W;) to quantify the importance of such interconnectedness. This is achieved by de-
composing the total estimated cost inefficiency into a Direct Effect component (representing Idiosyncratic
Inefficiency, s;; ,ftl-t) and an Indirect (Network) Effect component (3] i Sij ,& j1), as detailed in Subsection
3.2.3.

We find that the Indirect (Network) Effect component is, on average, negative. This finding is directly
associated with our negative estimate for the network dependence parameter (0 = —0.542), given that
the underlying, network-independent inefficiency estimates (t;; from Equation 9) and the elements of
the weights matrix (W;) are non-negative. Specifically, a negative p introduces negative dependencies
within the network multiplier matrix S(p, W;). Consequently, for a bank connected to peers with higher
underlying inefficiency, the network effect tends to yield a net reduction in that bank’s total cost inefficiency,

relative to its own Direct Effect component.
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Figure 2 visually presents this efficiency-enhancing role of network interactions in the Chilean inter-
bank market. The figure presents kernel density estimates comparing the distributions of the Idiosyncratic
Inefficiency component (Direct Effect, red line) and the final Total Inefficiency estimate (blue line) across
all bank-period observations. A clear leftward shift is observed for the distribution of Total Inefficiency
relative to that of the Idiosyncratic Inefficiency. This displacement means that the predominantly negative
Indirect (Network) Effects lead to Total Inefficiency levels that are, on average, lower than what would
be implied by banks’ idiosyncratic components alone. Thus, the interconnections within the interbank
lending market, as captured by our model, appear to play a significant role in improving overall cost

efficiency in the sector.

Figure 2: Kernel Density of the Direct and Total Effects
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Notes: The figure contains two kernel density plots. These depict estimates of the Direct
or Idiosyncratic component of cost inefficiency (red line) and the Total component (blue
line), with data pooled across all banks and months in the sample period.

0.0

To further quantify the economic significance of the network effects—suggested by the leftward shift
in the inefficiency distributions shown in Figure 2—we introduce an intuitive metric termed “Efficiency
Gain.” This measure captures the percentage reduction in a bank’s cost inefficiency attributable to
network interactions, relative to its Direct (Idiosyncratic) Effect. Formally, it is computed as (1 —
Total Inefficiency;, /Direct Effect;;) x 100%.°

Figure 3 illustrates the temporal evolution of these efficiency gains through monthly boxplots for

6This formulation stems from the decomposition Total Inefficiency = Direct Effect + Indirect Effect. Thus,
the gain is 1 — DirectEfecttindirect Bifect * Gince our estimated Indirect Effect is predominantly negative (indicating an
efficiency improvement), this formula quantifies the positive percentage gain. For instance, if Direct Effect = 0.10
and Total Inefficiency = 0.07, the gain is (0.10 — 0.07)/0.10 = 0.30 or 30%. A small number of observations
yielding extreme gain values (e.g., those initially above the 95th percentile), often resulting from division by Direct

Effect values close to zero.
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the 2016m01-2017m12 period, while Table 3 provides their overall descriptive statistics. The results
highlight the benefits of networks, as measured by interbank loans, in the Chilean industry. The median
bank-period observation experiences an efficiency gain of approximately 20%, indicating a substantial
reduction in operational costs attributable to network effects beyond its own idiosyncratic baseline. The
considerable range of gains also shows significant heterogeneity in how different banks leverage, or are
affected by, network interactions. Thus, our findings reinforce that interconnectedness not only influences
the shape of the inefficiency distribution but also translates into economically meaningful improvements

in cost efficiency for a significant portion of the Chilean banking sector.

Figure 3: Temporal Evolution of Network-Driven Efficiency Gains (%)
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Notes: The figure presents a time series of monthly boxplots il-
lustrating the distribution of Efficiency Gains for selected months
over 2016m01-2017m12. Efficiency Gains are calculated as (1 —
Total Inefficiency;, /Direct Effect;;). The horizontal dashed red line
indicates the overall mean value of these gains across the sample pe-
riod.

Table 3: Descriptive Statistics for Network-Driven Efficiency Gains

Min. 1stQu. Median Mean 3rd Qu. Max.

Value 0.000 0.171 0.354  0.384 0.548  0.990

Note: The table reports descriptive statistics for the Efficiency Gain metric over the period
2016m01-2017m12, calculated as (1 — Total Inefficiency,;, /Direct Effect;;). Total Ineffi-
ciency and Direct Effect components are derived from the stochastic cost frontier estimation.
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5.4 Exploring Alternative Network Specifications as Robustness Checks
and Channel Analysis

Our central finding of a negative network dependence parameter (0 ~ —0.5), suggesting that intercon-
nectedness is associated with improved cost efficiency (lower inefficiency), aligns with several plausible
economic mechanisms. Banks may experience heightened competitive pressures from their intercon-
nected peers, incentivizing cost optimization. Alternatively, they might engage in learning or benchmark-
ing behaviors, specifically ‘negative benchmarking,” where banks actively observe and avoid operational
inefficiencies exhibited by connected institutions.

A rigorous empirical disentanglement of these specific channels is complex and may be beyond the
scope of this paper. Nevertheless, we leverage the richness of our administrative data (Form C-18) to
explore how our findings hold up under alternative definitions of the network adjacency matrix (W;).
By systematically varying the underlying financial instruments and maturity categories that define the
network, we can conduct comprehensive robustness checks of our main finding. Additionally, observing
how the results change across these specifications allows us to conjecture about the potential mechanisms
at play. For example, if network effects are stronger for certain types of obligations, it may suggest which
kinds of interbank relationships are the primary conduits for these efficiency-enhancing spillovers.

5.4.1 Robustness to Network Definition by Maturity

We first exploit the maturity information in the C-18 data to construct three distinct versions of the
adjacency matrix W;, each based on the total value of obligations within a specific maturity category.
Table 4 presents the estimation results for networks defined by: (1) ‘Overnight/at sight‘ obligations, (2)
obligations with maturity ‘Up to one year, and (3) obligations with ‘More than one year‘ maturity. The
final column reports our baseline model, which uses all obligations combined.

We find no statistically significant network effect when interconnectedness is defined solely by at-sight
obligations. This suggests that these very short-term exposures, likely reflecting daily operational liquidity
management, may not be the primary channel for the strategic interactions that influence overall cost
efficiency. Conversely, networks based on obligations with longer maturities exhibit strong, statistically
significant, and negative dependence parameters. For obligations up to one year (0 = —0.455"**) and
those exceeding one year (0 = —0.295"), interconnectedness is robustly associated with improved cost
efficiency. The effect is largest in magnitude for the intermediate ‘Up to one year® category. This
may indicate that relationships with this maturity—which likely reflect core operational financing and
risk management decisions beyond immediate liquidity needs—are particularly important conduits for
competitive pressures or active benchmarking among banks.
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Table 4: Model Results for Networks Defined by Obligation Maturity

Obligations Overnight/ Up to More than All Obligations

at sight one year  one year (Baseline)

Panel A. Interconnectedness parameter

P 0.009 -0.455"*  -0.295"* -0.542**
(0.064) (0.115) (0.068) (0.112)
Panel B. Cost frontier main parameters
oy 0.110** 0.101** 0.107* 0.102**
(0.004) (0.005) (0.008) (0.011)
oy 0.016™* 0.022*** 0.019** 0.013***
(0.005) (0.005) (0.004) (0.005)
Controls in the Translog Cost Function Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Observations 418 418 418 418

Notes: 1. The table reports the central results for the parameters in equations (1) and (2). The ‘Controls
in the Translog Cost Function’ row indicates the inclusion of all first-order, second-order (squared), and
interaction terms for outputs, input prices, and quasi-fixed inputs as specified in the translog cost function
TL(yis, Pis> 2ir; B7) in equation (1). 2. Data: Chilean banking system (2016m1-2017m12). 3. Standard
errors (in parentheses) computed via wild bootstrap. 4. *** significant at 1%; ** 5%; * 10%.

5.4.2 Robustness to Network Definition by Financial Instrument

We now explore the sensitivity of our findings by examining variations in the construction of the interbank
network adjacency matrix (W;) based on different combinations of financial instruments reported in Form
C-18. Specifically, we construct alternative versions of W, as follows: first, we define a network based
exclusively on financial derivative contracts (Derivatives Only); second, we define an unsecured exposure
network by subtracting collateral values from total obligations, thus isolating pure credit risk exposures
(Unsecured Exposures); and third, we construct a traditional funding network using only term deposits
(Term Deposits Only). Finally, we include our baseline network constructed from total obligations, which
encompasses all instruments (All Obligations (Baseline)), for comparison.

Overall, the results presented in Table 5 strongly support the robustness of our central finding. The
consistently significant and negative network dependence parameter across all specifications indicates that
the efficiency-enhancing effect is not driven by a single type of instrument. However, the results from
these different specifications allow us to conjecture about the potential channels at play. For instance, the
significant effect in the Derivatives Only network suggests that interactions related to risk management
and hedging activities may serve as a channel for learning or benchmarking best practices. Similarly, the
strong effect observed for Unsecured Exposures may highlight the role of heightened market discipline; the
absence of collateral could intensify incentives for banks to actively monitor counterparts and to operate
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more efficiently to signal their creditworthiness. Finally, the finding for the Term Deposits network
confirms that these efficiency-enhancing pressures are also present within the most traditional interbank
funding markets, likely reflecting competitive forces. Collectively, these results suggest that the positive
impact of interconnectedness on efficiency is a multifaceted phenomenon, driven by a combination of risk
management benchmarking, heightened market discipline, and traditional competitive pressures.

Table 5: Model Results for Networks Defined by Financial Instrument Type

Derivatives Unsecured Term All Obligations

Only Exposures Deposits (Baseline)
Panel A. Interconnectedness parameter
p -0.360** -0.540"*  -0.372** -0.542%*
(0.064) (0.111) (0.117) (0.112)
Panel B. Cost frontier main parameters
oy 0.107** 0.102* 0.106*** 0.102*
(0.013) (0.012) (0.005) (0.011)
oy 0.017* 0.013** 0.019** 0.013***
(0.004) (0.004) (0.004) (0.005)
Controls in the Translog Cost Function Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Observations 418 418 418 418

Notes: 1. The table reports the central results for the parameters in equations (1) and (2). The ‘Controls
in the Translog Cost Function’ row indicates the inclusion of all first-order, second-order (squared),
and interaction terms for outputs, input prices, and quasi-fixed inputs as specified in the translog cost
function T L(y;;, pir» zir; %) in equation (1). 2. Data: Chilean banking system (2016m1-2017m12). 3.
Standard errors (in parentheses) computed via wild bootstrap. 4. *** significant at 1%; ** 5%; * 10%.

5.4.3 Other Specifications and Mechanisms (Ongoing Research)

(Further work is in progress to explore additional specifications, including changing the network direction-
ality from borrower-to-lender to lender-to-borrower and employing alternative normalization methods.
We are also developing formal tests to explore the roles of market competition and other network charac-
teristics—such as centrality or concentration indices—in mediating the observed efficiency effects.)

22



6 (Preliminary) Conclusions

This paper research the influence of bank interconnectedness, as measured through the interbank lending
market, on operational cost efficiency within the Chilean banking sector. Motivated by the extensive
literature focusing primarily on the systemic risk and financial contagion aspects of financial networks,
especially during crises, our study aimed to contribute to the less explored domain of how these network
structures shape banking performance and efficiency during periods of relative economic stability.

Utilizing unique, transaction-level administrative data from the Chilean Financial Market Commission
(CMF) for the period 2008-2020, we constructed time-varying network adjacency matrices (W;) repre-
senting actual interbank lending relationships. To analyze these rich data, we employed a novel two-step
Generalized Method of Moments (GMM) estimation strategy within a stochastic frontier analysis (SFA)
framework. This approach integrated network dependencies via a spatial/network autoregressive param-
eter (p) in a flexible translog cost function, enabling the estimation of bank-specific cost inefficiencies
while controlling for unobserved heterogeneity and network influences.

Our empirical analysis reveals robust evidence that interconnectedness is a statistically significant
determinant of bank cost efficiency in Chile. We estimate an average network dependence parameter
(p) of approximately -0.5 , suggesting that, on average, network connections in the Chilean interbank
market are associated with improved cost efficiency (i.e., lower cost inefficiency). Density estimates show
a leftward shift in the distribution of total cost inefficiency relative to its idiosyncratic (Direct Effect)
component. Quantifying this impact, our decomposition analysis reveals that network effects contribute
to a significant “Efficiency Gain”; for the median bank-period observation, these network interactions
account for a reduction in cost inefficiency of approximately 35 percentage points, relative to the bank’s
idiosyncratic baseline. These findings suggest that interbank networks may facilitate mechanisms such
as competitive pressures or enhanced benchmarking opportunities, leading to tangible improvements in
operational efficiency.

This study makes several contributions. Primarily, it extends empirical evidence beyond the traditional
focus on systemic risks by providing quantitative insights into how interbank relationships concretely
influence bank operational performance under normal economic conditions. Methodologically, our work
demonstrates the application of advanced econometric techniques that effectively incorporate network
dependencies with time-varying structures into stochastic frontier models using granular administrative
data, specifically within a multi-output cost function context for banking. From a policy perspective, the
findings highlight that interbank network structures are not only conduits of potential systemic risk but also
critical elements influencing the efficiency and operational strength of the banking sector. Consequently,
understanding and monitoring these network dynamics is essential for policymakers aiming to support
robust, efficient, and stable financial systems that underpin broader economic health.

Given these preliminary results, avenues for future research include a deeper investigation into the
specific channels through which interconnectedness translates into efficiency gains.
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