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Introduction

Previously: we were interested in  using cross-sectional data.

In this section: we will (briefly) introduce methods for time series analysis.

That is, a set of observations  with  as the time index. We will focus on discrete time series, with a natural temporal ordering,
), where  is realized when  is determined.

Most data in macroeconomics and finance come in this form.

A researcher's interest typically lies in modeling, forecasting, and studying the effects of shocks (and whether these effects will dissipate).
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Time Series as a Stochastic Process

A time series is a stochastic process (the sequence of random variables  ), where observations close in time will be dependent. Their
study requires a different distributional theory than the one we used in cross-sectional.

While a deterministic process will always produce the same output from a given starting condition, a stochastic process has some
indeterminacy that relates to the future evolution of the process.

Stochastic Process: the probability law governing .

Realization: One draw from the process (would be  ).

For instance, 'if we could re-run history', one result would be  and another ,
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Introduction (cont.)

We will review:

1. Univariate Time Series (single, scalar, observations recorded sequentially over equal time increments). For instance, .

2. Non-Stationary Time Series (unit root). For instance, .
( + a note on models for the Variance of a Time Series ARCH/GARCH, for instance, ).

3. Vector Autoregressive models (VAR).
For instance,  and .
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Yt = 0.7Yt−1 + ut

Yt = Yt−1 + ut

σ2
t = 0.2Y 2

t−1

Yt = 0.7Yt−1 + 0.2Xt−1 + ut Xt = 0.3Xt−1 + 0.1Yt−1 + νt
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Concepts

Before we start, some concepts:

Conditional first moment: .

Autocovariances: ; .

Autocorrelations: .

Strict Stationarity (strong): The process is strictly stationary if the probability distribution of  is identical to the
probability distribution of    (joint distributions are time invariant).

Covariance Stationarity (weak): The process is covariance stationary if  and   (mean and
autocovariances are time invariant).

The central point will be whether the TS of interest are stationary or not (e.g., whether the series will return to its mean after a
shock). This determines the technique to use.
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E(Yt|Yt−1) ≡ f(yt−1)

γt,k = cov(Yt,Yt+k) γ0 = V ar(Yt) = E(Yt − E(Yt))2

ρt,k = cor(Yt,Yt+k)

(Yt,Yt+1, . . . ,Yt+k)

(Yτ ,Yτ+1, . . . ,Yτ+k) ∀ t, τ, k

E(Yt) = μt = μ = cons γt,k = γk ∀ t, k
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Concepts (cont.)

White noise. serially uncorrelated random variables with zero mean and finite variance. For example, the Gaussian white noise process,
, which implies , , and  (cons.). A related idea is the

concept of innovation (whether the information set is involved).

Martingale:  follows a martingale process if  where  is the  information set.

Martingale Difference Process:  follows a martingale difference process if .  is called a martingale difference
sequence ('MDS'). A related concept is Brownian Motion (a continuous version of an MDS).

The Lag Operator  lags the elements of a sequence by one period: ; .
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εt ∼ N (0,σ2) E(εt) = E(εt|εt−1, εt−2. . . ) = 0 E(εtεt−j) = Cov(εtεt−j) = 0 E(ε2
t ) = V ar(εt) = σ2

Yt E(Yt+1|It) = Yt It t

Yt E(Yt+1|It) = 0 {Yt}

L Lyt = yt−1 L2yt = yt−2
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1. Univariate Time Series
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The ARMA Process

Autoregressive Process (AR). The present value of a time series is a linear function of previous observations,

or  where  and  is sometimes called an innovation.
For instance, the AR(1) is .

Moving Average process (MA). The (weighted) sum of the current and previous errors,

or  where . For instance, the MA(1) is .

The ARMA(p,q) is . For instance, ARMA(1,1): . This model was popularized by Box and Jenkins, who
also developed a methodology that I will mention later.
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Yt =
p

∑
j

ϕjYt−j + ut

a(L)Yt = ut a(L) = (1 − ϕ1L − ϕ2L
2−. . . −ϕpL

p) ut

Yt = ϕYt−1 + ut

Yt =
q

∑
j

θjut−j + ut

Yt = b(L)ut b(L) = (1 + θ1L + θ2L
2+. . . +θpL

p) Yt = θ1ut−1 + ut

a(L)Yt = b(L)ut (1 − ϕL)Yt = (1 + θL)ut
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AR to MA

Let's explore an interesting link between the AR and MA models, which will be useful later in our discussion of stationarity. We'll start with
the AR(1) model and then progress to the AR(2) to establish a more general case.

Notice that the AR(1), after repeated substitutions, can take the following form

therefore, if ,

and, hence,
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Yt = ϕYt−1 + ut

= ϕ(ϕYt−2 + ut−1) + ut

= ϕrYt−r + ϕr−1ut−r+1+. . . +ϕut−1 + ut

|ϕ| < 1

limr→∞ ϕrYt−r = 0

Yt =
∞

∑
j=0

ϕj ut−j }  MA(∞)
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Brook Taylor (1685-1731)

AR to MA (cont.)

Alternatively, using the lag operator, , the question would be like

Thus, for , and honoring Brook Taylor,
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(1 − ϕL)Yt = ut

Yt
?= (1 − ϕL)−1ut

|ϕ| < 1

Yt = (1 − ϕL)−1ut

= (1 + ϕL + ϕ2L2+. . . )ut

=
∞

∑
j=0

ϕj ut−j ,  MA(∞)
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AR to MA (cont.)

For the AR(2), , the term  looks like a second order polynomial; that is, because  is an operator,
replacing  by , we have . Factoring second degree polynomials,

thus,

and, therefore, for 

In other words, instead of imposing conditions on , the requirements are placed on . Generally speaking, having eigenvalues with a
modulus less than one, which is equivalent, as we will state later, to all the roots of the characteristic polynomial having a modulus
greater than one.

Prof. Luis Chancí - Econometría (II / Práctica)

(1 − ϕ1L − ϕ2L
2)Yt = ut (1 − ϕ1L − ϕ2L

2) L

L ψ (1 − ϕ1ψ − ϕ2ψ
2)

(1 − ϕ1ψ − ϕ2ψ
2) ≡ (1 − λ1L)(1 − λ2L)

λ1 ∗ λ2 = −ϕ2

λ1 + λ2 = ϕ1

Yt = (1 − λ1L)−1(1 − λ2L)−1ut

|λi| < 1,

Yt = (
∞

∑
j=0

λ
j
1L

j)(
∞

∑
j=0

λ
j
2L

j) ut−j }  MA(∞)

ϕ λ
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Example 1:

we have

Thus, to find the eigenvalues,

which implies

hence,  and .

Example 2:

we have

Thus,

which implies

hence,

AR to MA (cont.)
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Yt = 0.6Yt−1 + 0.2Yt−2 + ut

(1 − 0.6L − 0.2L2)Yt = ut

(λ2 − 0.6λ − 0.2) = 0

λi =
−(−0.6) ±√(−0.6)2 − 4(−0.2)

2

λ1 = 0.84 λ2 = −0.24

Yt = 0.5Yt−1 − 0.8Yt−2 + ut

(1 − 0.5L + 0.8L2)Yt = ut

(λ2 − 0.5λ + 0.8) = 0

λi = 0.25 ± 0.86i

R = √0.252 + 0.862 = 0.9 < 1
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Moments and Stationarity - MA

Let's begin with the MA(1)

one can show that:

, which is a constant (does not depend on time).

, which is also a constant (does not depend on time).

 for 

 for 

Hence, the MA(1) process is said to be covariance (weakly) stationary.
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Yt = θut−1 + ut , ut ∼ (0,σ2)

E(Yt) = θE(ut−1) + E(ut) = 0

γ0 = V (Yt) = V (θut−1) + V (ut) + 2Cov(θut−1,ut) = (θ2 + 1)σ2

γ1 = E(YtYt−1) = θσ2

γs = 0 s > 1

ρ1 = =γ1

γ0

θ

(1+θ2)

ρs = 0 s > 1
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Moments and Stationarity - MA (cont.)

Now, for the MA(q) process:

one can show that

,

,

and

In other words, the MA(q) process is (weakly) stationary:  is a combination of stationary terms, where the mean and variance are
constant, and the autocovariances depend on  but not on .
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Yt =
q

∑
j=0

θjL
jut−j , ut ∼ (0,σ2)

E(Yt) = 0

γ0 = (1 + θ2
1 + θ2

2+. . . +θ2
q)σ2

γs = {
σ2(θj + θj+1θ1+. . . +θq−jθq) if s = 1, . . . , q

0 if s > q

Yt

s t
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Moments and Stationarity - MA (cont.)

Lastly, let's review the MA(  ),

In this case,

,

,

and 

Thus, the process is covariance (weakly) stationary under the following assumption: Square Summability, .

An alternative (stronger) requirement would be: Absolute Summability, .
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∞

Yt =
∞

∑
j=0

θjL
jut−j , ut ∼ (0,σ2)

E(Yt) = 0

γ0 = σ2(1 + θ2
1 + θ2

2+. . . ) ≡ σ2∑
∞
j θ2

j

γs = σ2∑∞
j θjθj+s

∑j θ
2
j < ∞

∑j |θj| < ∞
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MA(1): MA(2): 

Simulating MA models

Simulations of MA(q) processes, with .
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ut ∼ (0, 0.82)

Yt = 1.2ut−1 + ut Yt = 1.2ut−1 + 0.9ut−2 + ut
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Moments and Stationarity - The AR Model

We just reviewed conditions for a MA process to be covariance stationary. Thus, the focus for the AR model will be on whether one can
write the infinite moving average representation.

Let's start with the AR(1) model, .

As showed, the process can be expressed as  and, therefore, the stationarity condition for the AR(1) is , so that
the MA sum converges, .

Similarly, for  the characteristic equation is . Thus, its one characteristic root is . Therefore, the series is
stationary as long as  which is the same condition as .

Thus,
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Yt = ϕYt−1 + ut

Yt = ∑∞
j=0 ϕ

jut−j |ϕ| < 1

1 + ϕ + ϕ2+. . . → 1
1−ϕ

(1 − ϕL)Yt = ut (1 − ϕψ) = 0 ψ = 1/ϕ

|ϕ| < 1 |ψ| > 1

Yt = (1 − ϕL)−1ut
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Moments and Stationarity - The AR Model (cont.)

Thus, for the AR(1) model  with , we can find that the first moments are as follows:

the unconditional expectation is ,

the unconditional variance is ,

the autocovariances are
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Yt = ϕYt−1 + ut |ϕ| < 1

E(Yt) = 0

γ0 = V (ut + ϕut−1 + ϕ2ut−2+. . . ) = (1 + ϕ2 + ϕ4+. . . )σ2 → σ2

1−ϕ2

γ1 = cov(Yt,Yt−1) = (ϕσ2 + ϕ3σ2 + ϕ5σ2+. . . ) = ϕγ0

γj = ϕjγ0
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Moments and Stationarity - The AR Model (cont.)

For the AR(p) model,

recall that  is a polynomial in .

Define the characteristic equation as . The  solutions, , can be used to factorize the polynomial,

The relationship between eigenvalues or inverse roots and the roots is . Therefore,  is invertible if each factor is invertible; that
is, if  (outside the unit circle) or  (inside the unit circle). Notice that this condition considers that some roots may be complex,

.

Hence, the condition can be stated as that all the roots of the characteristic polynomial (  ) having a modulus greater than one
(outside the unit circle). In such case,
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(1 − ϕ1L − ϕ2L
2−. . . . −ϕpL

p)Yt = ut

a(L) = (1 − ϕ1L − ϕ2L
2−. . . . −ϕpL

p) L

ϕ(ψ) = (1 − ϕ1ψ − ϕ2ψ
2−. . . . −ϕpψ

p) = 0 p λ1, . . . ,λp

ϕ(ψ) = (1 − λ1ψ)(1 − λ2ψ). . .

ψj = λ
−1
j ϕ(z)

|ψj| > 1 |λj| > 1

λj = rj ± cj√−1

ψj

Yt = (1 − λ1ψ)−1(1 − λ2ψ)−1. . . (1 − λpψ)−1ut
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AR(1): 

Inverse root: .

AR(2): 

Inverse roots:  and .

Simulating AR models

Simulations of AR(p) processes, with .
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ut ∼ (0, 0.82)

Yt = 0.8Yt−1 + ut

λ = 0.8

Yt = 0.6Yt−1 + 0.2Yt−2 + ut

λ1 = −0.24 λ2 = 0.84
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Approaching Time Dependence

Autocorrelation function (ACF)
Researchers (empirically) study the time dependence by the correlation

As a function of , , it is called a correlogram.

Under stationarity, , the function is known as the autocorrelation function (ACF), thus .

The population moments are replaced with sample moments,
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Corr(Yt,Yt−h) = ρYt,Yt−h
= ; h =. . . , −2, −1, 0, 1, 2, . . .

Cov(Yt,Yt−h)

√V (Yt) ⋅ V (Yt−h)

h ρ(h)

V (Yt) = V (Yt−h) ρh = γh/γ0

Ĉov(yt, yt−h) =
T

∑
t=h+1

(yt − ȳ)(yt−h − ȳ) ; h =. . . , −2, −1, 0, 1, 2, . . .
1

T − h
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MA(1): AR(1): 

Approaching Time Dependence (cont.)

The autocorrelation function (ACF) for the simulated MA and AR processes, with .
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ut ∼ (0, 0.82)

Yt = 1.2ut−1 + ut Yt = 0.8Yt−1 + ut
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Approaching Time Dependence in Time Series Analysis

Understanding Partial Autocorrelation Function (PACF)
The Partial Autocorrelation Function (PACF) is an empirical tool for identifying the number of lags in Autoregressive (AR) components of
ARMA processes in time series. It measures the correlation between observations in a time series separated by a certain number of lags (k),
while controlling for the correlations at all shorter lags.

Lag-by-Lag Analysis: PACF examines the correlation of a time series with its lagged values for various lags, one at a time, removing the
effects of previous lags.

Regression Approach: Each lag in PACF corresponds to a regression of the time series on its past values up to that lag:

The coefficient (  ) of the highest lagged term in each regression represents the partial correlation at that lag. A significant spike in the
PACF plot at lag  followed by non-significant values suggests an AR(k) model.
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(Lag)  k Regression Equation PACF

1 yt = β0 + β1yt−1 + ut β1

2 yt = β0 + β1yt−1 + β2yt−2 + ut β2

⋮ ⋮ ⋮

βk

k
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MA(1): AR(1): 

Approaching Time Dependence (cont.)

The Partial Autocorrelation Function (PACF) for the simulated MA and AR processes, with .
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ut ∼ (0, 0.82)

Yt = 1.2ut−1 + ut Yt = 0.8Yt−1 + ut
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The Box-Jenkins Approach

It is a systematic (empirical) methodology for analyzing and forecasting time series data. Primarily used for forecasting time series.

Steps:

Model Identification. Analyze the time series plot. Also, the ACF and PACF plots. Identify the appropriate ARIMA (Autoregressive
Integrated Moving Average) model (determine the order of differencing, the number of AR terms, and the number of MA terms). In the
followig subsection we review the meaning of 'Integrated'.

Estimation. Estimate the parameters of the identified ARIMA(p, d, q) model.

Model Checking. Validate the fitted model (i.e., checking for autocorrelation in the residuals or the Ljung-Box test to explore no
significant autocorrelation in residuals).

Model Refinement. If the model does not fit well, return to step 1 for re-identification.
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2. Non-Stationary Time Series
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Deterministic trends - or trend stationarity.

Unit roots - or stochastic trends

Level shifts - breaks

Variance changes.

Non-Stationary Time Series

The main assumption on the time series data so far has been stationarity. However, many macro-economic variables are trending.

Stationarity can be violated in different ways:
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Non-Stationary Time Series

Deterministic Trend
Some examples are: (i) ; or (ii) , where  and 

Figure: Quarterly GDP - Chile. 'Volumen a precios del año anterior encadenado, series empalmadas, desestacionalizado, referencia
2018.' Source: Construcción del autor usando R y la API del BCentral.
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Yt = ψ + β ⋅ t + εt Xt = ϕXt−1 + ut |ϕ| < 1 Yt = Xt + ψ + β ⋅ t
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# R code to simulate the Random Walk
set.seed(1234)
t  <- 1:100
y <- arima.sim(list(order = c(0, 1, 0)), n = length(t))
plot(y)

The effect of a shock ( , , and )

Non-Stationary Time Series

Stochastic Trend: Random Walk
A radom walk process is: 

This structure would imply that the effect of a shock is permanent: 
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yt = yt−1 + εt

yt = ∑t
τ=1 ετ

y0 = 0 ε1 = 1 ε2 = … = εT = 0
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# R code to simulate the Random Walk with drift
set.seed(1234)
y <- arima.sim(model= list(order = c(0, 1, 0)), n=100, mean=1.3 )
plot(y) The effect of a shock ( , , , and )

Non-Stationary Time Series

Stochastic Trend: Random Walk with Drift
It is a random walk plus a constant term: 

This structure would imply that shocks have permanent effects and are influenced by the drift: 
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yt = μ + yt−1 + εt

yt = μ ⋅ t +∑t
τ=1 ετ

y0 = 0 μ = 1.3 ε1 = 1 ε2 = … = εT = 0
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Non-Stationary Time Series

Deterministic vs. Stochastic trend and De-trending
Stochastic Trend. There are important implications for  rather than  in :

The effect of the initial value stays in the process. .

Shocks have permanent effects. Accumulate to a random walk component  called a stochastic trend.

The variance increases .

The covariance is  and the autocorrelation is  (which dies out very slowly with )

De-trending. When dealing with non-stationary time series, a common approach is to transform the series to achieve stationarity. This
transformation is often referred to as 'de-trending'.

First Order Integration (I(1)). If the first difference, , is stationary, the series is called integrated of first order, denoted
as I(1); hence, it is named Integrated Series with .
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ϕ = 1 ϕ < 1 Yt = ϕYt−1 + εt

E(Yt|Y0) = Y0

∑ εt

V (∑ εt|Y0) = t ⋅ σ2

E((Yt − Y0)(Yt−s − Y0)|Y0) = (t − s)σ2 √(t − s)/t s

ΔYt = (Yt − Yt−1) = εt

d = 1
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Non-Stationary Time Series

A caution in treating trends

1. Using the transformation  for

Deterministic Trend: After the transformation , the series becomes stationary.

Stochastic Trend: After the transformation , the series remains non-stationary.

2. Using First Difference  for

Deterministic Trend: The first difference is . This is akin to a Moving
Average process with a kind of 'unit root.'

Stochastic Trend: The first difference is . The first difference is stationary.

It is crucial to conduct statistical tests to verify the presence of unit roots and correctly identify the nature of the trend (deterministic
or stochastic) in the time series.
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(Yt − β ⋅ t)

(Yt − β ⋅ t) = ϕ + εt

(Yt − β ⋅ t) = Y0 +∑t

j=0 εj

(Yt − Yt−1)

(Yt − Yt−1) = (β ⋅ t − εt) − (β ⋅ (t − 1) − εt−1) = β + (εt − εt−1)

(Yt − Yt−1) = εt
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Non-Stationary Time Series

Unit Root Testing
The key approach in unit root testing is to test for a unit root in an autoregressive model.

To illustrate, let's review the Dickey-Fuller Test - for the AR(1) :

Hypothesis Testing. The null Hypothesis  is 'tests against stationarity', specifically ; thus, the alternative hypothesis 
implies stationarity.

Equivalent Formulation. Reformulate it as , where . Thus, the null hypothesis becomes , and the
alternative is .

Dickey-Fuller Test Statistic: The test statistic is calculated as the t-ratio: . The asymptotic distribution for this test statistic
follows the Dickey-Fuller distribution, not the standard normal distribution .
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Yt = ϕYt−1 + εt

(H0) H0 : ϕ = 1 (H1)

ΔYt = πYt−1 + εt π = ϕ − 1 H0 : π = 0

H1 : −2 < π < 0

π̂/se(π̂)

N(0, 1)
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Non-Stationary Time Series

Unit Root Testing: ADF

Augmented Dickey–Fuller Test in AR(p) Model. The Augmented Dickey–Fuller (ADF) test extends the Dickey-Fuller test to higher-order
autoregressive processes, .

The inclusion of lagged difference terms accounts for serial correlation and makes the test robust for higher-order AR processes.

ADF Test Formulation: Reformulate the model to include lagged difference terms
.

Null and Alternative Hypotheses:  is that 'the time series has a unit root (non-stationary)', i.e., . The alternative Hypothesis is
that the time series is stationary.

ADF Test Statistic: The test statistic is . And the critical values for this test are specific to the ADF distribution.
Rejecting  suggests that the series is stationary.

Implementation Notes: The selection of p is crucial and can be determined based on information criteria like AIC or BIC.
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Yt = ϕ1Yt−1 + ϕ2Yt−2 + ⋯ + ϕpYt−p + εt

ΔYt = α + βt + γYt−1 + δ1ΔYt−1 + δ2ΔYt−2 + ⋯ + δp−1ΔYt−p+1 + εt

(H0) γ = 0

t-statistic = γ̂/se(γ̂)

H0
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Non-Stationary Time Series

Unit Root Testing: ADF (cont.)
There are, however, some weaknesses of the ADF test:

Assumption of i.i.d. residuals. But many time series exhibit, for instance, time-varying volatility or conditional heteroskedasticity,
violating this assumption.

Power Issues: The ADF test can suffer from low statistical power, especially when the series is close to being non-stationary but not
exactly so (the test may fail to reject the null hypothesis even when the series is actually stationary).

Small Samples: The test may have size distortion. The probability of rejecting  when it is true (type I error) can be higher than the
nominal level.
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H0
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Non-Stationary Time Series

Unit Root Testing: Alternative Unit Root Tests

Phillips-Perron Test is a variation of the ADF test. Focuses on correcting for any autocorrelation and heteroskedasticity in the error
terms utilizing non-parametric statistical methods.

Zivot-Andrews Test accounts for the possibility that the time series may appear to have a unit root but is actually stationary around a
changing mean (structural break). The null hypothesis of a unit root with a one-time structural break in level or trend.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test aims to determine if a time series is stationary around a deterministic trend. The
null hypothesis is that the series is stationary (trend stationary or level stationary).
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# Código de programación en R:
library(quantmod) # acceder a datos
library(forecast) # methods and tools for displaying and analysing univariate ti
library(tseries)  # Time Series Analysis and Computational Finance

apple <- getSymbols( "AAPL",
                      from=as.Date("2015-01-01"), 
                      to  =as.Date("2023-10-12"), 
                      auto.assign=F)
df       <- data.frame(date= index(apple), apple, row.names = NULL)
precio.sa<- seasadj(stl( ts( na.omit(ma(df$AAPL.Adjusted, order=7)),
                             frequency=7), s.window="periodic"))
tsdisplay(precio.sa)

Example: Time Series in 

Apple Inc. stock prices (note: this is only an illustration of commands and it is not aimed at discussing whether is a good empirical model).
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# Unit Root:
adf.test(precio.sa)
## 
##     Augmented Dickey-Fuller Test
## 
## data:  precio.sa
## Dickey-Fuller = -2.2511, Lag order = 13, p-value = 0.472
## alternative hypothesis: stationary

# First Diff
dP <- diff(precio.sa, differences = 1)

# Estimar el mejor modelo ARIMA 
auto.arima(dP, seasonal=FALSE) # Then, ARIMA(1,1,1)
## Series: dP 
## ARIMA(1,0,1) with non-zero mean 
## 
## Coefficients:
##          ar1     ma1    mean
##       0.8116  0.1084  0.0691
## s.e.  0.0147  0.0253  0.0428
## 
## sigma^2 = 0.1168:  log likelihood = -759.87
## AIC=1527.74   AICc=1527.76   BIC=1550.53

#ACF PACF
tsdisplay(dP)

# Unit Root
adf.test(dP)$p.value
## [1] 0.01

Example: Time Series in  (cont.)
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A short note on ARCH Models
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Autoregressive Conditional Heteroscedasticity (ARCH)

Up to now, we modeled  using ARIMA structures, but it is also possible to model the residuals or the variance.

ARCH models are used to model and forecast time-varying volatility in time series data.

Widely used for modeling and forecasting the volatility of financial assets like stocks, currencies, and derivatives.

The ARCH(q) model is defined for a time series  with the following structure for the variance:

where,  is the conditional variance and  is the residual at time .

The parameters of an ARCH model are typically estimated using Maximum Likelihood Estimation (MLE). Choosing the correct order q is
often based on statistical tests like the Lagrange Multiplier (LM) test.
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Extensions of ARCH Models

Some extensions are aimed at offering more flexibility and accuracy in modeling complex volatility patterns observed in real-world financial
time series data.

Generalized ARCH (GARCH): An extension of ARCH that includes lagged conditional variances in the model.

where  and  are the orders of the GARCH model.

Exponential GARCH (EGARCH): Models the log of the variance, capturing the asymmetric effects of positive and negative shocks
on volatility.

Threshold GARCH (TGARCH): Allows different responses of volatility to positive and negative shocks, useful in financial markets
where volatility tends to increase more with negative shocks.
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4. Vector Autoregressive models (VAR)
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Introduction to VAR

Stock and Watson (2021, in Journal of Economic Perspectives ) describe the role of macroeconomists as encompassing a list of tasks, for
which Vector Autoregressive models (VARs) serve as a useful statistical tool. These tasks include:

Describe and summarize macroeconomic time series

Make forecasts

Recover the structure of the macroeconomy from the data

Advise macroeconomic policy-makers

Vector Autoregression (VAR) is used to capture the linear interconnections among multiple time series. It generalizes the univariate
autoregressive model (the one we just reviewed) to allow for more than one evolving variable.
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State-Space Notation in Vector Autoregression (VAR)

To illustrate, consider the following system of OLS regressions for two variables modeled using two lags:

Where,  and  are the time series variables (for instance, GDP and monetary policy);  are the coefficients; ,  are the error
terms.

Vector Autoregression (VAR) models can be represented using state-space notation, which is useful for dealing with multivariate time
series data in a compact and structured form. (Note: A State-Space model comprises two main equations the state equation and the
observation equation. The model is conducive to advanced forecasting methods and can be used in conjunction with Kalman filtering for
dynamic updates and analysis.)

For the example: firstly, notice that the system can be expressed as a kind of AR(2):
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yt = ϕ1yt−1 + ϕ2yt−2 + θ1mt−1 + θ2mt−2 + ϵ1t

mt = γ1mt−1 + γ2mt−2 + α1yt−1 + α2yt−2 + ϵ2t

yt mt {ϕ, θ, γ,α} ϵ1t ϵ2t

[
yt

mt

] = [
ϕ1 θ1

γ1 α1
] [

yt−1

mt−1
] + [

ϕ2 θ2

γ2 α2
] [

yt−2

mt−2
] + [

ϵ1t

ϵ1t
]

Yt = Φ1Yt−1 + Φ2Yt−1 + Φϵt

44 / 51



State-Space Notation in Vector Autoregression (VAR)

Secondly, the 'kind of AR(2)' is expressed as follows:

where,  is a  (or, generally speaking, ) matrix of coefficients to be estimated.

Stationarity. Notice that the last equation looks like an AR(1). Thus, it is possible to state conditions, similar to those we reviewed for
AR(1), to ensure that the system is stationary. In particular, the eigenvalues of  are inside the unit circle (i.e., ).

Estimation of VARs.

VAR models require a large number of observations due to the number of parameters being estimated.

After defining the appropriate lag length and variables, estimation of the parameters (coefficients) is based on an OLS approach.

Choosing the correct lag length is crucial. Information criteria like AIC, BIC can be used for this purpose.
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Impulse Response Functions in Vector Autoregression

Impulse Response Functions (IRFs) play an esential role in VAR analysis by illustrating the effect of one-time shocks on the system. The key
question IRFs address is how an exogenous shock, such as a monetary policy change, impacts other variables in the VAR model (e.g., GDP).

From the Moving Average (MA) representation of a VAR model, the response of future values to a current shock is given by:

To continue, we need some assumptions for the shock variables ,

Expectation:  (Mean of shocks is zero).

Covariance Matrix:  (Covariance matrix of shocks).

Independence Over Time:  (Shocks are uncorrelated over time).

Prof. Luis Chancí - Econometría (II / Práctica)

= Φs∂Xt+s

∂ξt

ξt

E{ξt} = 0

E{ξtξ′
t} = Ω

E{ξtξ′
t−j} = 0 for all j > 0

46 / 51



Impulse Response Functions in Vector Autoregression

Non-Diagonal : If  is not diagonal, a shock in one equation impacts other equations, creating interdependencies.

Alternative Representation The VAR process can also be represented as:

where  are standardized shocks with:

Identifying Shocks in VAR. To 'identify' the relationship between shocks, a transformation of the shock variables is necessary.
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Impulse Response Functions in Vector Autoregression

Approaches for Shock Identification
Orthogonalization: Utilizing a transformation , with  being a triangular matrix and  a diagonal matrix.

Standardization Using Cholesky Decomposition: Here, , where  is a lower triangular matrix. The order of equations in the
VAR becomes crucial.

Generalization by Pesaran and Shin: This approach offers a more generalized method for constructing IRFs as is less sensitive to the
ordering of variables in the VAR, reducing the bias that can occur due to arbitrary ordering.

Software Considerations: Different software packages may compute IRFs differently. Some default to using  as a lower triangular matrix,
while others may not. Important: Be cautious about the approach used, as results can vary significantly based on the method of shock
identification.
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VAR in Practice using 

Consider a bivariate VAR(2) model with GDP growth (  ) and inflation (  ):

Simulating the data:

# Simular los datos de PIB e Inflación

GDP       <- rnorm(100, mean = 2, sd = 0.5)  # Simulated GDP 
Inflation <- rnorm(100, mean = 1, sd = 0.2)  # Simulated Inflation 
data_var  <- ts(cbind(GDP, Inflation), start = c(2010, 1), frequency = 4) # Quarterly, from 2010
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yt πt

yt = αy + Φyy1yt−1 + Φyπ1πt−1 + Φyy2yt−2 + Φyπ2πt−2 + ϵyt

πt = απ + Φπy1yt−1 + Φππ1πt−1 + Φπy2yt−2 + Φππ2πt−2 + ϵπt
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# Estimación de un VAR con dos rezagos
var_gdp_pi <- VAR(data_var, p=2) # p=2 lag order
var_gdp_pi
## 
## VAR Estimation Results:
## ======================= 
## 
## Estimated coefficients for equation GDP: 
## ======================================== 
## Call:
## GDP = GDP.l1 + Inflation.l1 + GDP.l2 + Inflation.l2 + const 
## 
##       GDP.l1 Inflation.l1       GDP.l2 Inflation.l2        const 
##   0.09179460   0.10613572  -0.02195858  -0.23427881   2.01168221 
## 
## 
## Estimated coefficients for equation Inflation: 
## ============================================== 
## Call:
## Inflation = GDP.l1 + Inflation.l1 + GDP.l2 + Inflation.l2 + const 
## 
##       GDP.l1 Inflation.l1       GDP.l2 Inflation.l2        const 
##   0.02259444   0.06618442   0.03181936  -0.01385804   0.86477643

# Función de Impulso Respuesta (IRF)
IRF1 <- irf(var_gdp_pi, 
            impulse = "GDP", 
            response = "Inflation", 
            n.ahead = 15) 
plot(IRF1)

Example: Estimation VAR(2) in 
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Cierre

¿Preguntas?

O vía E-mail: lchanci1@binghamton.edu
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